首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
G M Church  P P Slonimski  W Gilbert 《Cell》1979,18(4):1209-1215
The mRNAs from two yeast mitochondrial genes cob-box (cytochrome b) and oxi-3 (cytochrome oxidase 40,000 dalton subunit) are processed from large (7-10 kb) precursors. Certain mutations in each gene block the maturation of the RNAs from both genes at a variety of specific steps. The pleiotropic cytochrome b mutants seem to lack a functional trans-acting RNA required for the processing of both messengers. In contrast, the oxi-3 mutants may act by producing an activity that inhibits specific steps.  相似文献   

4.
Organization of the SUC gene family in Saccharomyces.   总被引:18,自引:7,他引:11       下载免费PDF全文
The SUC gene family of yeast (Saccharomyces) includes six structural genes for invertase (SUC1 through SUC5 and SUC7) found at unlinked chromosomal loci. A given yeast strain does not usually carry SUC+ alleles at all six loci; the natural negative alleles are called suc0 alleles. Cloned SUC2 DNA probes were used to investigate the physical structure of the SUC gene family in laboratory strains, commercial wine strains, and different Saccharomyces species. The active SUC+ genes are homologous. The suc0 allele at the SUC2 locus (suc2(0) in some strains is a silent gene or pseudogene. Other SUC loci carrying suc0 alleles appear to lack SUC DNA sequences. These findings imply that SUC genes have transposed to different chromosomal locations in closely related Saccharomyces strains.  相似文献   

5.
6.
7.
Summary Mitochondrial DNA from four strains of the oomycete Achlya has been compared and nine gene loci mapped, including that of the ribosomal protein gene, var1. Examination of the restriction enzyme site maps showed the presence of four insertions relative to a map common to all four strains. All the insertions were found in close proximity to genic regions. The four strains also cotained the inverted repeat first observed in A. ambisexualis (Hudspeth et al. 1983), allowing an examination by analysis of retained restriction sites of the evolutionary stability of repeated DNA sequences relative to single copy sequences. Although the inverted repeat is significantly more stable than single copy sequences, more detailed analysis indicated that this stability is limited to the portion encoding the ribosomal RNA genes. Thus, the apparent evolutionary stability of the repeat does not appear to derive from the inverted repeat structure per se.Abbreviations ATPase 6, 9 genes for ATPase subunits 6 and 9 - COI, II, III genes for cytochrome oxidase subunits 1, 2, and 3 - COB gene for apocytochrome b - L-, S-RNA genes for the mitochondrial large and small ribosomal RNAs - mtDNA mitochondrial DNA - var1 gene for the S. cerevisiae mitochondrially, encoded ribosomal protein - m.u. map units - bp base pairs - kb kilobase pairs  相似文献   

8.
9.
10.
Transcription of the human adenovirus E1a gene in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
H Handa  K Mizumoto  K Oda  T Okamoto  T Fukasawa 《Gene》1985,33(2):159-168
  相似文献   

11.
12.
In a screen of nuclear genes that assist splicing of mitochondrial localized group II introns in yeast we isolated low-copy number suppressors of splicing and respiratory-deficient point mutants of intron aI5gamma, the last intron of the gene encoding cytochrome c oxidase subunit I. One of the genes found contains the open reading frame (ORF) YGL064c that has previously been proposed to encode a putative RNA helicase of the DEAD box family. Deletion of the ORF gives rise to 100% cytoplasmic petites, indicating that the protein plays an essential role in the mitochondrial RNA metabolism. Overexpression of YGL064c-GFP fusions clearly revealed a mitochondrial localization of the protein. The gene encodes the fourth putative RNA helicase of Saccharomyces cerevisiae implicated in a mitochondrial function and was therefore termed MRH4 (for mitochondrial RNA helicase).  相似文献   

13.
The DNA sequences of two optional introns in the gene for subunit I of cytochome c oxidase in yeast mitochondrial DNA have been determined. Both contain long unassigned reading frames (URFs). These display regions of amino acid homology with six other URFs, two of which encode proteins involved in mitochondrial RNA splicing. Such conserved regions may thus define functionally important domains of proteins involved in RNA processing. This homology also implies that these URFs had a common ancestral sequence, which has been duplicated and dispersed around the genome. Comparison of the flanking exons in the long strain KL14-4A with their unsplit counterpart in D273-10B reveals clustered sequence differences, which lead in D273-10B to codons rarely used in exons. These differences may be linked to the loss or absence of one of the optional introns.  相似文献   

14.
15.
16.
Expression of ribosomal DNA insertions in Drosophila melanogaster.   总被引:35,自引:0,他引:35  
E O Long  I B Dawid 《Cell》1979,18(4):1185-1196
  相似文献   

17.
18.
G Faye  M Simon 《Cell》1983,32(1):77-87
We have analyzed the mitochondrial RNA of a yeast nuclear pet mutant with no cytochrome oxidase activity. The product of the gene affected in this mutant appears to be necessary for the correct maturation of the mitochondrial pre-mRNA of the cytochrome oxidase subunit I. It does not affect, however, the overall splicing of cytochrome b pre-mRNA or the intron excision of the 21S ribosomal RNA precursor. This gene has been isolated by genetic complementation in yeast, and its DNA sequence has been determined. It is transcribed, as detected by S1 mapping experiments, and could encode a protein of 436 amino acids.  相似文献   

19.
20.
R C Ogden  M C Lee    G Knapp 《Nucleic acids research》1984,12(24):9367-9382
The primary sequences of all the tRNA precursors which contain intervening sequences and which accumulate in the Saccharomyces cerevisiae rnal mutant are presented. A combination of DNA and RNA sequence analysis has led to elucidation of the primary sequence of four hitherto uncharacterized precursors. The location of the intervening sequence has in all cases been unambiguously determined by analysis of the intermediates in the splicing reaction. Secondary structures based upon the tRNA cloverleaf are shown for all the tRNA precursors and discussed with respect to common recognition by the yeast splicing endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号