首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review in this report our strategy and tactics for the design of 2-hydroxyarylidene-4-cyclopentene-1,3-diones as protein tyrosine kinase (PTK) inhibitors having low mitochondrial toxicities and/or hypoxia-targeting function. We based our synthetic design on an innovative pharmacophore, 2-methylene-4-cyclopentene-1,3-dione. We first showed the effectiveness of this pharmacophore in the development of 2-methylene-4-cyclopentene-1,3-dione as PTK inhibitor that have lower mitochondrial toxicity than the potent PTK inhibitor tyrphostin AG17. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to PTK inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17. Secondly, as a further investigation of the promising power of this 4-cyclopentene-1,3-dione as an innovative pharmacophore, we discuss our strategy of development of hypoxia-targeting PTK inhibitor TX-1123 analogues, 2-nitroimidazole-aminomethylenecyclopentenediones, such as TX-2036, for cancer treatment, especially for pancreatic cancers, which have a high level of hypoxia.  相似文献   

2.
A series of 2-hydroxyarylidene-4-cyclopentene-1,3-diones were designed, synthesized, and evaluated with respect to protein tyrosine kinase (PTK) inhibition, mitochondrial toxicity, and antitumor activity. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17, a potent antitumor tyrphostin. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to protein tyrosine kinase inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17.  相似文献   

3.
(R)- and (S)-Epichlorohydrins were used to prepare the enantiomers of sterically diverse haloacetylcarbamoyl-2-nitroimidazoles that function as hypoxic cell radiosensitizers. The synthetic design allowed for introduction of a side chain of varying bulk that permitted an examination of the steric effects on enantio-discrimination in biological assay systems. The single stereocenter also connected the two pharmacophores--a 2-nitroimidazole moiety critical to hypoxic cell radiosensitization, and a haloacetylcarbamoyl group to function as an anti-angiogenesis pharmacophore. In the chick embryo chorioallantoic membrane (CAM) assay, the R-enantiomers possessing the bulky p-tert-butylphenyl group showed higher anti-angiogenic activity than the corresponding S-enantiomers, while there were no differences in the activity between the enantiomers containing the less bulky methyl and tert-butyl groups. Among the compounds we report, R-p-tert-butylphenyl-bromoacetylcarbamoyl-2-nitroimidazole, TX-1898, was found to be the most promising candidate for further development of as anti-angiogenic hypoxic cell radiosensitizer.  相似文献   

4.
A group of 1,3-diarylurea derivatives, possessing a methylsulfonyl pharmacophore at the para-position of the N-1 phenyl ring, in conjunction with a N-3 substituted-phenyl ring (4-F, 4-Cl, 4-Me, 4-OMe), were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified 1-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl) urea (4e) as a potent COX-2 inhibitor (IC(50)=0.11 microM) with a high COX-2 selectivity index (SI=203.6) comparable to the reference drug celecoxib (COX-2 IC(50)=0.06 microM; COX-2 SI=405). The structure-activity data acquired indicate that the urea moiety constitutes a suitable scaffold to design new acyclic 1,3-diarylurea derivatives with selective COX-2 inhibitory activity.  相似文献   

5.
We designed, based on the molecular orbital (MO) calculation, synthesized, and evaluated the biological activities of the new antimetastatic hypoxic cell radiosensitizer, 2-nitroimidazole-acetamide, TX-1877, and its analogues. Each analogue has an electron-affinic imidazole group, an acetamide group and a certain hydrophilic group to control its biological effect, toxicity, and pharmacokinetics. In in vitro radiosensitization assay, most TX-1877 analogues, which have an electron affinity (EA) of more than 0.9 eV and partition coefficient (P) of more than 0.021, showed satisfactory enhancement ratios (ER > 1.60) at doses of I mM. On the other hand, imidazole analogues, such as TX-1908 (EA = 0.67 eV), TX-1910 (EA = -0.34 eV) and TX-1931 (EA = -0.37 eV), which have low electron affinities, had an ER of 1.31 or less. TX-1877 and KIN-806 effectively inhibited tumor regrowth when administered with irradiation in vivo at a dose of 0.4 mg/g. Tumor lung metastasis was inhibited by treatment with either TX-1877 or KIN-806 without irradiation at a dose of 0.4 mg/g. TX-1877 reduced markedly the mean number of metastatic lung nodules in comparison with KIN-806. Moreover, TX-1877 and KIN-806 enhanced macrophage and helper T lymphocyte infiltration for 3 weeks after drug treatment. TX-1877 shows a high EA value and has the C2 of HOMO localizing on N-methylamide and the C2 of LUMO localizing on 2-nitroimidazole group. The MO data might be useful for designing a bifunctional hypoxic cell radiosensitizer. TX-1877 and its analogues are potential antimetastatic hypoxic cell radiosensitizers, which would improve the efficiency of radiotherapy and quality of life in cancer treatment.  相似文献   

6.
For cancer therapy, hypoxia represents an important tumor specific target. Therefore we designed and synthesized antiangiogenic hypoxic cytotoxins as 'hypoxia modifiers'. They can be activated bioreductively in hypoxic cells to kill the oxygen-deficient tumor cells selectively and prevent their re-growth. The aromatic heterocycle di-N-oxides, tirapazamine (TPZ), TX-1102, and TX-402 inhibited growth of EMT6/KU cells, SAS/neo cells, and SAS/Trp248 cells (mutant p53 gene transformant) under hypoxic condition. They also induced apoptosis selectively at a dose of 10 microM each under hypoxic condition for 5 h. Their hypoxic cytotoxicities and apoptosis inducing activities were p53-independent because the activities in SAS/neo cells were almost similar to that in SAS/Trp248 cells. In angiogenesis inhibition assay using chick embryo chorioallantoic membrane (CAM), TPZ, TX-1102, TX-402 and TX-1033 showed 40, 25, 60 and 60% inhibition of angiogenesis each at a dose of 10 microg/CAM. On the other hand, the nitrosopyrimidine, TX-1041 had neither antiangiogenic activity nor cytotoxicity. Therefore the di-N-oxide group is thought to be required for the biological activities. TX-1102 was a potent antiangiogenic hypoxic cytotoxin inducing apoptosis p53-independently.  相似文献   

7.
The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.  相似文献   

8.
A group of (E)-1,3-diphenylprop-2-en-1-one derivatives (chalcones) possessing a MeSO(2)NH, or N(3), COX-2 pharmacophore at the para-position of the C-1 phenyl ring were synthesized using a facile stereoselective Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 structure-activity relationships were determined by varying the substituents on the C-3 phenyl ring (4-H, 4-Me, 4-F, and 4-OMe). Among the 1,3-diphenylprop-2-en-1-ones possessing a C-1 para-MeSO(2)NH COX-2 pharmacophore, (E)-1-(4-methanesulfonamidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7b) was identified as a selective COX-2 inhibitor (COX-2 IC(50)=1.0 microM; selectivity index >100) that was less potent than the reference drug rofecoxib (COX-2 IC(50)=0.50 microM; SI>200). The corresponding 1,3-diphenylprop-2-en-1-one analogue possessing a C-1 para-N(3) COX-2 pharmacophore, (E)-1-(4-azidophenyl)-3-(4-methylphenyl)prop-2-en-1-one (7f), exhibited potent and selective COX-2 inhibition (COX-1 IC(50)=22.2 microM; COX-2 IC(50)=0.3 microM; SI=60). A molecular modeling study where 7b and 7f were docked in the binding site of COX-2 showed that the p-MeSO(2)NH and N(3) substituents on the C-1 phenyl ring are oriented in the vicinity of the COX-2 secondary pocket (His90, Arg513, Phe518, and Val523). The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design new acyclic 1,3-diphenylprop-2-en-1-ones with selective COX-1 or COX-2 inhibitory activity.  相似文献   

9.
The inhibitory activities of 5,6-dihydro-4H-1,3-selenazine derivatives on protein kinases were investigated. In a multiple protein kinase assay using a postnuclear fraction of v-src-transformed NIH3T3 cells, 4-ethyl-4-hydroxy-2-p-tolyl-5, 6-dihydro-4H-1,3-selenazine (TS-2) and 4-hydroxy-6-isopropyl-4-methyl-2-p-tolyl-5,6-dihydro-4H-1, 3-selenazine (TS-4) exhibited selective inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K) over protein kinase A (PKA), protein kinase C (PKC) and protein tyrosine kinase (PTK). In further experiments using purified kinases, TS-2 (IC(50)=0.36 microM) and TS-4 (IC(50)=0.31 microM) inhibited eEF-2K about 25-fold more effectively than calmodulin-dependent protein kinase-I (CaMK-I), and about 6-fold (TS-2) or 33-fold (TS-4) more effectively than calmodulin-dependent protein kinase-II (CaMK-II), respectively. TS-2 and TS-4 showed much weaker inhibitory activity toward PKA and PKC, while TS-4, but not TS-2, moderately inhibited immunoprecipitated v-src kinase. TS-2 (10.7-fold) and TS-4 (12.5-fold) demonstrated more potent and more specific eEF-2K inhibitory activity than rottlerin, a previously identified eEF-2K inhibitor. TS-2 inhibited ATP or eEF-2 binding to eEF-2K in a competitive or non-competitive manner, respectively. In cultured v-src-transformed NIH3T3 cells, TS-2 also decreased phospho-eEF-2 protein level (IC(50)=4.7 microM) without changing the total eEF-2 protein level. Taken together, these results suggest that TS-2 and TS-4 are the first identified selective eEF-2K inhibitors and should be useful tools for studying the function of eEF-2K.  相似文献   

10.
A group of regioisomeric (E)-1,3-diarylprop-2-en-1-one derivatives possessing a COX-2 SO2Me pharmacophore at the para position of the C-1 or C-3 phenyl ring, in conjunction with a C-3 or C-1 phenyl (4-H) or substituted-phenyl ring (4-F, 4-OMe and 4-Me), were designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. These target (E)-1,3-diarylprop-2-en-1-ones were synthesized via a Claisen-Schmidt condensation reaction. In vitro COX-1/COX-2 isozyme inhibition structure-activity studies identified (E)-1-(4-methanesulfonylphenyl)-3-(4-methylphenyl)prop-2-en-1-one (9f) as a potent COX-2 inhibitor (IC50=0.3 microM) with a high COX-2 selectivity index (SI=106) comparable to that of the reference drug rofecoxib (COX-2 IC50=0.5 microM; COX-2 SI>200). A molecular modeling study where 9f was docked in the binding site of COX-2 showed that the para-SO2Me substituent on the C-1 phenyl ring is oriented in the vicinity of the secondary COX-2 binding site near Val523. The structure-activity data acquired indicate that the propenone moiety constitutes a suitable scaffold to design novel acyclic 1,3-diarylprop-2-en-1-ones with selective COX-2 inhibitory activity.  相似文献   

11.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

12.
We have designed sugar-hybrid TX-1877 derivatives conjugated with sugar moieties including beta-glucose (beta-Glc), beta-galactose (beta-Gal), alpha-mannose (alpha-Man) and N-acetyl-beta-galactosamine (beta-GalNAc). Compound 1 (TX-1877) was glycosylated with appropriate peracetylated sugars using BF(3)-OEt(2) to give acetylated sugar-hybrids, 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), and 10 (TX-2243). Removal of the acetyl groups afforded the sugar-hybrids having free hydroxyl groups, 11 (TX-2141), 12 (TX-2218), 13 (TX-2217) and 14 (TX-2068). We evaluated their radiosensitizing activities by an in vitro radiosensitization assay. All free hydroxyl hybrids have lower enhancement ratio (ER) values (ER1.43) and lower n-octanol/water partition coefficient (P(oct)) values (P(oct)<1.00x10(-2)) than does 1 (TX-1877, ER=1.75, P(oct): 5.60x10(-2)). All acetylated hybrids have similar P(oct) values (3.55x10(-2)-1.05x10(-1)) to 1 (TX-1877) and have improved ER values (ER>or=1.47) compared to the hybrids having free hydroxyl groups. Among these, 5 (TX-2244) is the most active radiosensitizer (ER=2.30). We found a good correlation (r=0.866) between the magnitude of P(oct) (logP(oct)) and the ER value of 5 (TX-2244), 6 (TX-2245), 7 (TX-2246), 10 (TX-2243) and 1 (TX-1877), suggesting that increasing the hydrophobicity is reflected in increased in vitro radiosensitizing activity. In the present study, we have succeeded in producing sugar-hybrid hypoxic cell radiosensitizers that have an increased radiosensitizing activity that does not depend on increased hydrophobicity.  相似文献   

13.
Inhibition studies of 4-hydroxyphenylpyruvate dioxygenase (HPPD) with various synthesized 2-o-substituted-benzoyl- and 2-alkanoyl-cyclohexane-1,3-diones suggest that the presence of a strongly electronegative group at the ortho position and the conformation of the benzene ring moiety on the benzoylcyclohexane-1,3-dione inhibitors are crucial for potent HPPD inhibition.  相似文献   

14.
The nitroimidazole-linked phenanthridines 2-NLP-3 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide) and 2-NLP-4 (5-[3-(2-nitro-1-imidazoyl)-butyl]-phenanthridinium bromide) are composed of the radiosensitizer, 2-nitroimidazole, attached to the DNA intercalator phenanthridine by a 3- and 4-carbon linker, respectively. Previous in vitro assays showed both compounds to be 10-100 times more efficient as hypoxic cell radiosensitizers (based on external drug concentrations) than the untargeted 2-nitroimidazole radiosensitizer, misonidazole (Cowan et al., Radiat. Res. 127, 81-89, 1991). Here we have used a (32)P postlabeling assay and 5'-end-labeled oligonucleotide assay to compare the radiation-induced DNA damage generated in the presence of 2-NLP-3, 2-NLP-4, phenanthridine and misonidazole. After irradiation of the DNA under anoxic conditions, we observed a significantly greater level of 3'-phosphoglycolate DNA damage in the presence of 2-NLP-3 or 2-NLP-4 compared to irradiation of the DNA in the presence of misonidazole. This may account at least in part for the greater cellular radiosensitization shown by the nitroimidazole-linked phenanthridines over misonidazole. Of the two nitroimidazole-linked phenanthridines, the better in vitro radiosensitizer, 2-NLP-4, generated more 3'-phosphoglycolate in DNA than did 2-NLP-3. At all concentrations, phenanthridine had little effect on the levels of DNA damage, suggesting that the enhanced radiosensitization displayed by 2-NLP-3 and 2-NLP-4 is due to the localization of the 2-nitroimidazole to the DNA by the phenanthridine substituent and not to radiosensitization by the phenanthridine moiety itself.  相似文献   

15.
A series of syn-restricted polymethoxylated 4-heteroarylcoumarins--the isostuctural analogs of combretastatin A-4--was synthesized by Suzuki-Miyaura cross-coupling reaction and evaluated for antiproliferative activity. The 4-(1-methyl-1H-indol-5-yl)chromen-2-ones exhibit a potent cytotoxicity against HBL100 epithelial cell line with an IC(50) value amounting to 0.098 and 0.078 microM, respectively. The two compounds, having an indolyl moiety, potent inhibit in vitro microtubule assembly with a substoichiometric mode of action. A structure-activity relationship was discussed and the indolyl moiety was proved to be a good surrogate for the 3-hydroxy-4-methoxyphenyl ring of CA-4.  相似文献   

16.
The tyrosinase inhibitory potential of seventeen synthesized oxazolone derivatives has been evaluated and their structure-activity relationships developed in the present work. All the synthesized derivatives, 3-19, demonstrated excellent in vitro tyrosinase inhibitory properties having IC50 values in the range of 1.23+/-0.37-17.73+/-2.69 microM, whereas standard inhibitors l-mimosine and kojic acid have IC50 values 3.68+/-0.02 and 16.67+/-0.52 microM,, respectively. Compounds 4-8 having IC50 values 3.11+/-0.95, 3.51+/-0.25, 3.23+/-0.66, 1.23 +/- 0.37, and 2.15+/-0.75, respectively, were found to be very active members of the series, even better than both the standard inhibitors. However, compounds 3, 9-11, 13, 14, 16, 17, and 19 were found to be better than kojic acid but not l-mimosine. (2-Methyl-4-[E,2Z)-3-phenyl-2-propenyliden]-1,3-oxazol-5(4H)-one (7) bearing a cinnamyol residue at C-4 of oxazolone moiety and an IC50 = 1.23+/-0.37 microM was found to be the most active one among all tested compounds. These studies reveal that the substitution of functional group (s) at C-4 and C-2 positions plays a vital role in the activity of this series of compounds. It is concluded that compound 7 may act as a potential lead molecule to develop new drugs for the treatment of tyrosinase based disorders.  相似文献   

17.
18.
Brefeldin A (BFA) can induce a wide variety of human cancer cells to differentiation and apoptosis and is in development as an anticancer agent. To elucidate structural requirements for cytotoxicity and induction of differentiation and apoptosis, BFA was structurally modified into various derivatives including 4-epi-BFA in this study. Their inducing activities of apoptosis were evaluated with their cytotoxicities, DNA fragmentation and morphological changes in human colon cancer cell HCT 116. The cytotoxicity of 4-epi-BFA (TX-1923) (IC50 = 60 microM) was 300 times lower than that of BFA (IC50 = 0.2 microM). Furthermore, 4-epi-BFA induced DNA fragmentation and apoptotic morphological changes at much higher concentrations (70 and 50 microM, respectively) than BFA (0.11 and 0.36 microM, respectively). These results indicated that the configuration of 4-hydroxyl group of brefeldin A plays a key role in the cytotoxicity and induction of apoptosis. On the other hand, 7-O-acetyl-BFA, 4-O-acetyl-BFA, and 4,7-di-O-acetyl-BFA exhibited potential activities in cytotoxicity and inducibility of apoptosis. We suggested that the structural determinants for BFA include the moiety of the Michael acceptor, the conformational rigidity of the 13-membered ring, and the configuration of 4-hydroxyl group.  相似文献   

19.
A new series of diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter (DAT), which were modified at both the diphenylalkyl moiety and the phenyl ring in the phenylamino moiety of 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 1, was evaluated for their inhibitory activities against auto-oxidative lipid peroxidation in canine brain homogenates. Some of these were approximately equivalent in activity to alpha-tocopherol as a potent antioxidant with IC(50) values of low micromolar order, and the 4-hydroxyphenyl derivative 11 showed the most potent antioxidative activity with an IC(50) value of 0.32 microM, exhibiting approximately 5-fold more potent activity than alpha-tocopherol. The structure-activity relationship (SAR) studies of the antioxidative activity of these derivatives are presented.  相似文献   

20.
Nitroimidazoles and their derivatives have drawn continuing interest over the years because of their varied biological activities, recently found application in drug development for antimicrobial chemotherapeutics and antiangiogenic hypoxic cell radiosensitizers. In order to search for novel antibacterial agents, we designed and synthesized a series of secnidazole analogs based on oxadiazole scaffold (4-21). Among these compounds, 4 and 7-21 were reported for the first time. These compounds were tested for antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. This new nitroimidazole derivatives class demonstrated strong antibacterial activities. Escherichia coli β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitory assay and docking simulation indicated that the compounds 2-(2-methoxyphenyl)-5-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)-1,3,4-oxadiazole (11) with MIC of 1.56-3.13 μg/mL against the tested bacterial strains and 2-((2-methyl-5-nitro-1H-imidazol-1-yl)methyl)-5-(2-methylbenzyl)-1,3,4-oxadiazole (12) with MIC of 1.56-6.25 μg/mL were most potent inhibitors of Escherichia coli FabH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号