首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.27.3) to ssDNA using generic hexamer oligodeoxyribonucleotide microchip. Single-stranded octamer oligonucleotides were immobilized within 3D hemispherical gel pads. The octanucleotides in individual pads 5′-{N}N1N2N3N4N5N6{N}-3′ consisted of a fixed hexamer motif N1N2N3N4N5N6 in the middle and variable parts {N} at the ends, where {N} represent A, C, G and T in equal proportions. The chip has 4096 pads with a complete set of hexamer sequences. The affinity was determined by measuring dissociation of the RNase–ssDNA complexes with the temperature increasing from 0°C to 50°C in quasi-equilibrium conditions. RNase binase showed the highest sequence-specificity of binding to motifs 5′-NNG(A/T/C)GNN-3′ with the order of preference: GAG > GTG > GCG. High specificity towards G(A/T/C)G triplets was also confirmed by measuring fluorescent anisotropy of complexes of binase with selected oligodeoxyribonucleotides in solution. The affinity of RNase binase to other 3-nt sequences was also ranked. These results demonstrate the applicability of the method and provide the ground for further investigations of nonenzymatic functions of RNases.  相似文献   

2.
3.
RNase T is one of eight distinct 3'-->5' exoribonucleases present in Escherichia coli. The enzyme plays an important role in stable RNA metabolism, including tRNA end turnover and 3' maturation of most stable RNAs because it is the only RNase that can efficiently remove residues near a double-stranded (ds) stem. In the course of study of its specificity and mechanism, we found that RNase T also has single-strand-specific DNase activity. Purified RNase T degrades both single-stranded (ss)RNA and ssDNA in a non-processive manner. However, in contrast to its action on RNA, RNase T binds ssDNA much more tightly and shows less sequence specificity. As with RNA, DNA secondary structure strongly affects its degradation by RNase T. Thus, RNase T action on a dsDNA with a single-stranded 3'-extension efficiently generates blunt-ended DNA. This property of RNase T suggested that it might be a useful enzyme for blunt-ended DNA cloning. We show here that RNase T provides much higher cloning efficiency than the currently used mung bean nuclease.  相似文献   

4.
5.
The bZip proteins GCN4 and C/EBP differ in their DNA binding specificities: GCN4 binds well to the pseudopalindromic AP1 site 5'-A4T3G2A1C0T1C2'A3'T4'-3' and to the palindromic ATF/CREB sequence 5'-A4T3G2A1-C0*G0'T1'C2'A3'T4'-3'; C/EBP preferentially recognizes the palindromic sequence 5'-A4T3T2G1C0*G0'C1'A2'-A3'T4'-3'. According to the X-ray structures of GCN4-DNA complexes, five residues of the basic region of GCN4 are involved in specific base contacts: asparagine -18, alanine -15, alanine -14, serine -11 and arginine -10 (numbered relative to the start point of the leucine zipper, which we define as +1). In the basic region of C/EBP position -14 is occupied by valine instead of alanine, the other four residues being identical. Here we analyse the role of valine -14 in C/EBP-DNA complex formation. Starting from a C/EBP-GCN4 chimeric bZip peptide which displays C/EBP specificity, we systematically mutated position -14 of its basic region and characterized the DNA binding specificities of the 20 possible different peptides by gel mobility shift assays with various target sites. We present evidence that valine -14 of C/EBP interacts more strongly with thymine 2 than with cytosine 1' of the C/EBP binding site, unlike the corresponding alanine -14 of GCN4, which exclusively contacts thymine 1' of the GCN4 binding sites.  相似文献   

6.
The structural organization of mouse metaphase chromosomes   总被引:1,自引:0,他引:1  
The binding of highly purified anti-nucleoside antibodies to mouse (Mus musculus) metaphase chromosomes was studied by an immunofluorescence technique. The chromosomal DNA was denatured by one of two selective denaturation procedures because these antibodies reacted with single stranded but not native DNA. After ultraviolet irradiation (UV), which produced single stranded regions primarily in AT rich DNA, the binding of antiadenosine (anti-A) produced a pattern of fluorescent bands similar to that produced by quinacrine (Q-bands). Additional foci of bright fluorescence were observed at the centrometric (C-band) regions, which are known to contain AT rich satellite DNA. After photooxidation, which produced single stranded regions in GC rich DNA, the binding of anti-A produced a fluorescent banding pattern similar to the R-banding pattern seen after thermal denaturation and staining with coriphosphine O. After photooxidation, R-band patterns were also obtained with anti-cytidine (anti-C) and anti-5-methylcytidine (anti-M). After either UV irradiation or photooxidation, anti-M, but not anti-C, showed intense binding to the C-band regions of mouse chromosomes. — These findings led to the following conclusions: (1) Antibody banding patterns reflect the presence of a class of AT rich, GC poor DNA in chromosome regions which show bright quinacrine fluorescence and in the regions that contain the AT rich satellite DNA. (2) The alternate, quinacrine dull regions contain a relatively GC rich class of DNA which appears to be more highly methylated than the AT rich DNA in the Q-bright bands, but not the AT rich satellite DNA in the Q-dull C-bands. (3) 5-Methylcytosine residues occur in a sequence of mouse satellite DNA that contains both adjacent pyrimidines and guanine residues. The basic repeating unit of mouse satellite DNA is known to contain the sequence 5-GAAAAATGA-3 (Biro et al., 1975). Therefore, assuming the antibodies used could detect single bases in denatured DNA, the methylated sequence in mouse satellite DNA   相似文献   

7.
Bacteriophage T4 RNase H, a flap endonuclease-1 family nuclease, removes RNA primers from lagging strand fragments. It has both 5' nuclease and flap endonuclease activities. Our previous structure of native T4 RNase H (PDB code 1TFR) revealed an active site composed of highly conserved Asp residues and two bound hydrated magnesium ions. Here, we report the crystal structure of T4 RNase H in complex with a fork DNA substrate bound in its active site. This is the first structure of a flap endonuclease-1 family protein with its complete branched substrate. The fork duplex interacts with an extended loop of the helix-hairpin-helix motif class 2. The 5' arm crosses over the active site, extending below the bridge (helical arch) region. Cleavage assays of this DNA substrate identify a primary cut site 7-bases in from the 5' arm. The scissile phosphate, the first bond in the duplex DNA adjacent to the 5' arm, lies above a magnesium binding site. The less ordered 3' arm reaches toward the C and N termini of the enzyme, which are binding sites for T4 32 protein and T4 45 clamp, respectively. In the crystal structure, the scissile bond is located within the double-stranded DNA, between the first two duplex nucleotides next to the 5' arm, and lies above a magnesium binding site. This complex provides important insight into substrate recognition and specificity of the flap endonuclease-1 enzymes.  相似文献   

8.
Classen S  Lyons D  Cech TR  Schultz SC 《Biochemistry》2003,42(31):9269-9277
Oxytricha nova telomere end binding protein (OnTEBP) specifically recognizes and caps single-strand (T(4)G(4))(2) telomeric DNA at the very 3'-ends of O. nova macronuclear chromosomes. The discovery of proteins homologous to the N-terminal domain of the OnTEBP alpha subunit in Euplotes crassus, Schizosaccharomyces pombe, and Homo sapiens suggests that related proteins are widely distributed in eukaryotes. Previously reported crystal structures of the ssDNA binding domain of the OnTEBP alpha subunit both uncomplexed and complexed with telomeric ssDNA have suggested specific mechanisms for sequence-specific and 3'-end selective recognition of the single-strand telomeric DNA. We now describe comparative binding studies of ssDNA recognition by the N-terminal domain of the OnTEBP alpha subunit. Addition of nucleotides to the 3'-end of the TTTTGGGG telomere repeat decreases the level of alpha binding by up to 7-fold, revealing a modest specificity for a 3'-terminus relative to an internal DNA binding site. Nucleotide substitutions at specific positions within the t(1)t(2)t(3)T(4)G(5)G(6)G(7)G(8) repeat show that base substitutions at some sites do not substantially decrease the binding affinity (<2-fold for lowercase letters), while substitutions at other sites dramatically reduce the binding affinity (>20-fold decrease for the uppercase bold letter). Comparison of the structural and binding data provides unique insights into the ways in which proteins recognize and bind single-stranded DNA.  相似文献   

9.
Synthetic ligands comprising three aromatic amino acids, pyrrole (Py), imidazole (Im), and hydroxypyrrole (Hp), specifically recognize predetermined sequences as side-by-side pairs in the minor groove of DNA. To expand the repertoire of aromatic rings that may be utilized for minor groove recognition, three five-membered heterocyclic rings, 3-pyrazolecarboxylic acid (3-Pz), 4-pyrazolecarboxylic acid (4-Pz), and furan-2-carboxylic acid (Fr), were examined at the N-terminus of eight-ring hairpin polyamide ligands. The DNA binding properties of 3-Pz, 4-Pz, and Fr each paired with Py were studied by quantitative DNase I footprinting titrations on a 283 bp DNA restriction fragment containing four 6-bp binding sites 5'-ATNCCTAA-3' (N = G, C, A, or T; 6-bp polyamide binding site is underlined). The pair 3-Pz/Py has increased binding affinity and sequence specificity for G.C bp compared with Im/Py.  相似文献   

10.
F Inagaki  I Shimada  T Miyazawa 《Biochemistry》1985,24(4):1013-1020
The binding modes of inhibitors to ribonuclease T1 (RNase T1) were studied by the analyses of 270-MHz proton NMR spectra. The chemical shift changes upon binding of phosphate, guanosine, 2'-GMP, 3'-GMP, 5'-GMP, and guanosine 3',5'-bis(phosphate) were observed as high field shifted methyl proton resonances of RNase T1. One methyl resonance was shifted upon binding of phosphate and guanosine nucleotides but not upon binding of guanosine. Four other methyl resonances were shifted upon binding of guanosine and guanosine nucleotides but not upon binding of phosphate. From the analyses of nuclear Overhauser effects for the pair of H8 and H1' protons, together with the vicinal coupling constants for the pair of H1' and H2' protons, the conformation of the guanosine moiety as bound to RNase T1 is found to be C3'-endo-syn for 2'-GMP and 3'-GMP and C3'-endo-anti for 5'-GMP and guanosine 3',5'-bis(phosphate). These observations suggest that RNase T1 probably has specific binding sites for the guanine base and 3'-phosphate group (P1 site) but not for the 5'-phosphate group (PO site) or the ribose ring. The weak binding of guanosine 3',5'-bis(phosphate) and 5'-GMP to RNase T1 is achieved by taking the anti form about the glycosyl bond. The productive binding to RNase T1 probably requires the syn form of the guanosine moiety of RNA substrates.  相似文献   

11.
Side-by-side pairs of three five-membered rings, N-methylpyrrole (Py), N-methylimidazole (Im), and N-methylhydroxy-pyrrole (Hp), have been demonstrated to distinguish each of the four Watson Crick base pairs in the minor groove of DNA. However, not all DNA sequences targeted by these pairing rules achieve affinities and specificities comparable to DNA binding proteins. We have initiated a search for new heterocycles which can expand the sequence repetoire currently available. Two heterocyclic aromatic amino acids. N-methylpyrazole (Pz) and 4-methylthiazole (Th), were incorporated into a single position of an eight-ring polyamide of sequence ImImXPy-gamma-lmPyPyPy-beta-Dp to examine the modulation of affinity and specificity for DNA binding by a Pz/Py pair and or a Th/Py pair. The X/Py pairings Pz/Py and Th/Py were evaluated by quantitative DNase I footprint titrations on a DNA fragment with the four sites 5'-TGGNCA-3' (N=T, A, G, C). The Pz/Py pair binds T.A and A.T with similar affinity to a Py/Py pair but with improved specificity. disfavoring both G.C and C.G by about 100-fold. The Th/Py pair binds poorly to all four Watson Crick base pairs. These results demonstrate that in some instances new heterocyclic aromatic amino acid pairs can be incorporated into imidazole-pyrrole polyamides to mimic the DNA specificity of Py/Py pairs which may be relevant as biological criteria in animal studies become important.  相似文献   

12.
13.
Guanylyl-(2'-5')-guanosine binds to RNase T1 in 1:1 stoichiometry with a dissociation constant of 0.22 mM at pH 5.0 and 25 degrees C. This nucleotide, coupled to aminohexyl-Sepharose 4B, is able to serve as an affinity adsorbent for guanyloribonuclease [EC 3.1.4.8]. The strength of interaction between the adsorbent and various guanyloribonucleases at pH 5.0 was found to decrease in the following order: RNase N1 greater than RNase F1 greater than RNase T1 greater than RNase St. The bound enzymes can be released from the adsorbent either by increase of ionic strength or by increasing the pH from 5.0 to 7.5. The interaction between RNase T1 and the adsorbent is weakened by the presence of a low concentration of 2', 3'-, or 5'-GMP, which are competitive inhibitors of the enzyme. RNase F1 was purified to homogeneity by use of this affinity adsorbent.  相似文献   

14.
Interactions between the replicative RepA helicase hexamer of plasmid RSF1010 with the single-stranded DNA (ssDNA) have been studied, using the quantitative fluorescence titration, analytical sedimentation velocity, and sedimentation equilibrium techniques. Experiments were performed with fluorescein-labeled ssDNA oligomers. Studies with unmodified ssDNA oligomers were accomplished using the macromolecular competition titration method. Analyses of RepA helicase interactions with a series of the ssDNA provide direct evidence that the total site-size of the RepA hexamer-ssDNA complex is 19 +/- 1 nucleotide residues. The total ssDNA-binding site of the hexamer has a heterogeneous structure. Part of the total binding site constitutes the proper ssDNA-binding site of the enzyme, an area that possesses strong ssDNA-binding capability and encompasses only 8 +/- 1 residues of the ssDNA. The statistical effect on the macroscopic binding constant for the proper ssDNA-binding site indicates that it is structurally separated from the remaining part of the total ssDNA-binding site. Engagement in interactions with the ssDNA is accompanied by net ion release. Moreover, the proper ssDNA-binding site shows little base specificity. On the other hand, with long ssDNA oligomers, the entire total ssDNA-binding site of the RepA hexamer engages in interactions with the ssDNA resulting in a dramatic change in the nature of interactions with the nucleic acid. The association includes an uptake of ions by the protein. Moreover, unlike the proper-ssDNA-binding site, the total binding site shows a significant preference for pyrimidine oligomers. In this aspect, the RepA helicase is different from the Escherichia coli DnaB hexamer that shows large preference for purine homo-oligomers. In similar solution conditions, the ssDNA intrinsic affinity of the RepA hexamer is similar to the intrinsic affinity of the DnaB helicase. The RepA helicase binds to ssDNA oligomers that can accept more than one RepA hexamer with significant positive cooperative interactions.  相似文献   

15.
A new sequence-specific RNase was isolated from human colon carcinoma T84 cells. The enzyme was purified to electrophoretical homogeneity by pH precipitation, HiTrapSP and Superdex 200 FPLC. The molecular weight of the new enzyme, which we have named RNase T84, is 19 kDa. RNase T84 is an endonuclease which generates 5'-phosphate-terminated products. The new RNase selectively cleaved the phosphodiester bonds at AU or GU steps at the 3' side of A or G and the 5' side of U. 5'AU3' or 5'GU3' is the minimal sequence required for T84 RNase activity, but the rate of cleavage depends on the sequence and/or structure context. Synthetic ribohomopolymers such as poly(A), poly(G), poly(U) and poly(C) were very poorly hydrolysed by T84 enzyme. In contrast, poly(I) and heteroribopolymers poly(A,U) and poly(A,G,U) were good substrates for the new RNase. The activity towards poly(I) was stronger in two colon carcinoma cell lines than in three other epithelial cell lines. Our results show that RNase T84 is a new sequence-specific enzyme whose gene is abundantly expressed in human colon carcinoma cell lines.  相似文献   

16.
A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads. A selected set of immobilized 8mers was converted to double-stranded form by hybridization with a mixture of fluorescently labeled complementary 8mers. Massive parallel measurements of melting curves were carried out for the majority of 2080 6mer duplexes, in both the absence and presence of the Hoechst dye. The sequence-specific affinity for Hoechst 33258 was calculated as the increase in melting temperature caused by ligand binding. The dye exhibited specificity for A:T but not G:C base pairs. The affinity is low for two A:T base pairs, increases significantly for three, and reaches a plateau for four A:T base pairs. The relative ligand affinity for all trinucleotide and tetranucleotide sequences (A/T)(3)and (A/T)(4)was estimated. The free energy of dye binding to several duplexes was calculated from the equilibrium melting curves of the duplexes formed on the oligonucleotide microchips. This method can be used as a general approach for massive screening of the sequence specificity of DNA-binding compounds.  相似文献   

17.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2', 5'-phosphates. It has several high affinity binding sites that make it possible target for many organic and inorganic molecules. Ligand binding to RNase A can alter protein secondary structure and its catalytic activity. In this review, the effects of several drugs such as AZT (anti-AIDS), cis-Pt (antitumor), aspirin (anti-inflammatory), and vitamin C (antioxidant) on the stability and conformation of RNase A in vitro are compared. The results of UV-visible, FTIR, and CD spectroscopic analysis of RNase complexes with aspirin, AZT, cis-Pt, and vitamin C at physiological conditions are discussed here. Spectroscopic results showed one major binding for each drug-RNase adduct with KAZT=5.29 (+/-1.6)x10(4) M(-1), Kaspirin=3.57 (+/-1.4)x10(4) M(-1), Kcis-Pt=5.66 (+/-1.9)x10(3) M(-1), and Kascorbate=3.50 (+/-1.5)x10(3) M(-1). Major protein unfolding occurred with reduction of alpha-helix from 29% (free protein) to 20% and increase of beta-sheet from 39% (free protein) to 45% in the aspirin-, ascorbate-, and cis-Pt-RNase complexes, while minor increase of alpha-helix was observed for AZT-RNase adduct.  相似文献   

18.
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.  相似文献   

19.
Ando RA  Morrical SW 《Biochemistry》1999,38(50):16589-16598
In bacteriophage T4, homologous genetic recombination events are catalyzed by a presynaptic filament containing stoichiometric quantities of the T4 uvsX recombinase bound cooperatively to single-stranded DNA (ssDNA). The formation of this filament requires the displacement of cooperatively bound gp32 (the T4 ssDNA-binding protein) from the ssDNA, a thermodynamically unfavorable reaction. This displacement is mediated by the T4 uvsY protein (15.8 kDa, 137 amino acids), which interacts with both uvsX- and gp32-ssDNA complexes and modulates their properties. Previously, we showed that uvsY exists as a hexamer under physiological conditions and that uvsY hexamers bind noncooperatively but with high affinity to ssDNA. We also showed that a fusion protein containing the N-terminal 101 amino acid residues of uvsY lacks interactions with uvsX and gp32 but retains both weak ssDNA-binding activity and a residual ability to stimulate uvsX-catalyzed recombination functions. Here, we present quantitative data on the oligomeric structure and ssDNA-binding properties of a closely related fusion protein designated uvsY. Sedimentation velocity and equilibrium results establish that uvsY, unlike native uvsY, behaves as a monomer in solution (M(app) = 14.2 kDa, = 2.1). Like native uvsY, uvsY binds noncooperatively to an etheno-DNA (epsilonDNA) lattice with a binding site size of 4 nucleotides/monomer; however at physiological ionic strength, the association constant for uvsY-epsilonDNA is decreased 10(4)-fold relative to native uvsY. Nevertheless, the magnitude of the salt effect on the association constant (K) is essentially unchanged between uvsY and uvsY, indicating that disruption of the C-terminus does not disrupt the electrostatic ssDNA-binding determinants found within each protomer of uvsY. Instead, the large difference in ssDNA-binding affinities reflects the loss of hexamerization ability by uvsY, suggesting that a form of intrahexamer synergism or cooperativity between binding sites within the uvsY hexamer leads to its high observed affinity for ssDNA.  相似文献   

20.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号