首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn(2+) bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 helix (R362H), and another in the S5 helix of the pore domain (A419H or F416H). Zn(2+) bridges readily form between R362H and A419H in open channels after the S4 helix has undergone its final motion. In contrast, a distinct bridge forms between R362H and F416H after early S4 activation, but before the final S4 motion. Both bridges form rapidly, providing constraints on the average position of S4 relative to the pore. These results demonstrate that the outer ends of S4 and S5 remain in close proximity during the final opening transition, with the S4 helix translating a significant distance normal to the membrane plane.  相似文献   

2.
BK (Maxi-K) channel activity is allosterically regulated by a Ca2+ sensor, formed primarily by the channel's large cytoplasmic carboxyl tail segment, and a voltage sensor, formed by its transmembrane helices. As with other voltage-gated K channels, voltage sensing in the BK channel is accomplished through interactions of the S1-S4 transmembrane segments with the electric field. However, the BK channel is unique in that it contains an additional amino-terminal transmembrane segment, S0, which is important in the functional interaction between BK channel alpha and beta subunits. In this study, we used perturbation mutagenesis to analyze the role of S0 in channel gating. Single residues in the S0 region of the BK channel were substituted with tryptophan to give a large change in side chain volume; native tryptophans in S0 were substituted with alanine. The effects of the mutations on voltage- and Ca2+-dependent gating were quantified using patch-clamp electrophysiology. Three of the S0 mutants (F25W, L26W, and S29W) showed especially large shifts in their conductance-voltage (G-V) relations along the voltage axis compared to wild type. The G-V shifts for these mutants persisted at nominally 0 Ca2+, suggesting that these effects cannot arise simply from altered Ca2+ sensitivity. The basal open probabilities for these mutants at hyperpolarized voltages (where voltage sensor activation is minimal) were similar to wild type, suggesting that these mutations may primarily perturb voltage sensor function. Further analysis using the dual allosteric model for BK channel gating showed that the major effects of the F25W, L26W, and S29W mutations could be accounted for primarily by decreasing the equilibrium constant for voltage sensor movement. We conclude that S0 may make functional contact with other transmembrane regions of the BK channel to modulate the equilibrium between resting and active states of the channel's voltage sensor.  相似文献   

3.
Large-conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channel α subunits possess a unique transmembrane helix referred to as S0 at their N terminus, which is absent in other members of the voltage-gated channel superfamily. Recently, S0 was found to pack close to transmembrane segments S3 and S4, which are important components of the BK(Ca) voltage-sensing apparatus. To assess the role of S0 in voltage sensitivity, we optically tracked protein conformational rearrangements from its extracellular flank by site-specific labeling with an environment-sensitive fluorophore, tetramethylrhodamine maleimide (TMRM). The structural transitions resolved from the S0 region exhibited voltage dependence similar to that of charge-bearing transmembrane domains S2 and S4. The molecular determinant of the fluorescence changes was identified in W203 at the extracellular tip of S4: at hyperpolarized potential, W203 quenches the fluorescence of TMRM labeling positions at the N-terminal flank of S0. We provide evidence that upon depolarization, W203 (in S4) moves away from the extracellular region of S0, lifting its quenching effect on TMRM fluorescence. We suggest that S0 acts as a pivot component against which the voltage-sensitive S4 moves upon depolarization to facilitate channel activation.  相似文献   

4.
Prolines in transmembrane (TM) alpha-helices are believed to play an important structural and/or functional role in membrane proteins. At a structural level a proline residue distorts alpha-helical structure due to the loss of at least one stabilizing backbone hydrogen bond, and introduces flexibility in the helix that may result in substantial kink and swivel motions about the effective "hinge." At a functional level, for example in Kv channels, it is believed that proline-induced molecular hinges may have a direct role in gating, i.e., the conformational change linked to opening/closing the channel to movement of ions. In this article we study the conformational dynamics of the S6 TM helix from of the Kv channel Shaker, which possesses the motif PVP--a motif that is conserved in Kv channels. We perform multiple molecular dynamics simulations of single S6 helices in a membrane-mimetic environment in order to effectively map the kink-swivel conformational space of the protein, exploiting the ability of multiple simulations to achieve greater sampling. We show that the presence of proline locally perturbs the helix, disrupting local dihedral angles and producing local twist and unwinding in the region of the hinge--an effect that is relaxed with distance from the PVP motif. We furthermore show that motions about the hinge are highly anisotropic, reflecting a preferred region of kink-swivel conformation space that may have implications for the gating process.  相似文献   

5.
The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline.  相似文献   

6.
A fine regulation of the amiloride-sensitive Epithelial Sodium Channel (ENaC), made of alpha, beta and gamma subunits, is crucial for maintenance of Na+ balance and blood pressure. Both beta- and gamma-ENaC participate in negative regulation by interacting with Nedd4-2, an E3 ubiquitin-ligase. Disruption of this interaction results in increased ENaC activity (Liddle syndrome). By two-hybrid screenings, we identified new potential partners of alpha-ENaC: WWP1 (E3 ubiquitin-ligase protein), UBC9 and TSG101 (E2 ubiquitin/SUMO-conjugating enzymes) and confirmed these interactions in GST pull-down assays. All these partners are implicated in protein trafficking and could be involved in the regulation of ENaC activity.  相似文献   

7.
16S ribosomal RNA gene sequences from seven strains of Aquaspirillum peregrinum, Aqu. itersonii, Aqu. polymorphum, and Oceanospirillum pusillum were compared with homologous sequences from other members of helical-shaped bacteria. The bootstrapped neighbor-joining tree, inferred from 887 aligned sites, placed the spirillum taxa assigned to Aquaspirillum, Oceanospirillum, Azospirillum, Magnetospirillum, Rhodospirillum, and Rhodocista of the Proteobacteria in seven clusters of alpha Proteobacteria separately from other shapes of bacteria. Aqu. peregrinum and Aqu. itersonii grouped together in 88% bootstrap support. They were more related to Rhodospirillum rubrum and Rsp. photometricum than Aqu. polymorphum. Aqu. polymorphum was close to Magnetospirillum gryphiswaldense, Mag. magnetotacticum, Rsp. fulvum, and Rsp. molischianum, and more close to Mag. gryphiswaldense. Oce. pusillum was not related to other spirillum taxa and was placed in a separate branch. Rhodocista was very closely related to Azospirillum. Photosynthesis and magnetotaxis, as phenotypic characters, were not important in the classification of helical bacteria.  相似文献   

8.
While the mechanisms of cellular Ca2+ entry associated with cell activation are well characterized, the pathway of continuous uptake of the large amount of Ca2+ needed in the biomineralization process remains largely unknown. Scleractinian corals are one of the major calcifying groups of organisms. Recent studies have suggested that a voltage-dependent Ca2+ channel is involved in the transepithelial transport of Ca2+ used for coral calcification. We report here the cloning and sequencing of a cDNA coding a coral alpha1 subunit Ca2+ channel. This channel is closely related to the L-type family found in vertebrates and invertebrates. Immunohistochemical analysis shows that this channel is present within the calicoblastic ectoderm, the site involved in calcium carbonate precipitation. These data and previous results provide molecular evidence that voltage-dependent Ca2+ channels are involved in calcification. Cnidarians are the most primitive organisms in which a Ca2+ channel has been cloned up to now; evolutionary perspectives on Ca2+ channel diversity are discussed.  相似文献   

9.
The values of the thermodynamic parameters characterizing the association of the subunits of reduced ricin have been determined from equilibrium studies in the analytical ultracentrifuge. van't Hoff analysis indicates that the Gibbs free energy change for subunit association is predominantly of entropic origin. The positive values for the entropy and enthalpy changes suggest that hydrophobic forces may play a dominant role in the association. The association is characterized by values of Ka of 1.72 X 10(6) M-1 at 22 degrees C and 5.66 X 10(6) M-1 at 37 degrees C. The association was not affected by the presence of 20 mM lactose. Toxicity studies demonstrated that reduced ricin at a concentration where it was 52% associated had a toxicity equal to that of native ricin at that same concentration. At higher concentrations, reduced ricin was even more toxic than native ricin. Diethyl maleate, which reduces intracellular glutathione levels, blocked the toxicity of ricin but not the toxicity of reduced ricin. The disulfide bond linking the A and B subunits appears to play no role in toxicity other than to hold the two subunits together at low concentrations.  相似文献   

10.
11.
12.
The internal vestibule of large-conductance Ca(2+) voltage-activated K(+) (BK) channels contains a ring of eight negative charges not present in K(+) channels of lower conductance (Glu386 and Glu389 in hSlo) that modulates channel conductance through an electrostatic mechanism (Brelidze, T.I., X. Niu, and K.L. Magleby. 2003. Proc. Natl. Acad. Sci. USA. 100:9017-9022). In BK channels there are also two acidic amino acid residues in an extracellular loop (Asp326 and Glu329 in hSlo). To determine the electrostatic influence of these charges on channel conductance, we expressed wild-type BK channels and mutants E386N/E389N, D326N, E329Q, and D326N/E329Q channels on Xenopus laevis oocytes, and measured the expressed currents under patch clamp. Contribution of E329 to the conductance is negligible and single channel conductance of D326N/E329Q channels measured at 0 mV in symmetrical 110 mM K(+) was 18% lower than the control. Current-voltage curves displayed weak outward rectification for D326N and the double mutant. The conductance differences between the mutants and wild-type BK were caused by an electrostatic effect since they were enhanced at low K(+) (30 mM) and vanished at high K(+) (1 M K(+)). We determine the electrostatic potential change, Deltaphi, caused by the charge neutralization using TEA(+) block for the extracellular charges and Ba(2+) for intracellular charges. We measured 13 +/- 2 mV for Deltaphi at the TEA(+) site when turning off the extracellular charges, and 17 +/- 2 mV for the Deltaphi at the Ba(2+) site when the intracellular charges were turned off. To understand the electrostatic effect of charge neutralizations, we determined Deltaphi using a BK channel molecular model embedded in a lipid bilayer and solving the Poisson-Boltzmann equation. The model explains the experimental results adequately and, in particular, gives an economical explanation to the differential effect on the conductance of the neutralization of charges D326 and E329.  相似文献   

13.
A long isoform of the human Epithelial Sodium Channel (ENaC) α subunit has been identified, but little data exist regarding the properties or regulation of channels formed by α728. The baseline whole cell conductance of oocytes expressing trimeric α728βγ channels was 898.1 ± 277.2 and 49.59 ± 13.2 µS in low and high sodium solutions, respectively, and was 11 and 2 fold higher than the conductances of α669βγ in same solutions. α728βγ channels were also 2 to 5 fold less sensitive to activation by the serine proteases subtilisin and trypsin than α669βγ in low and high Na+ conditions. The long isoform exhibited lower levels of full length and cleaved protein at the plasma membrane and a rightward shifted sensitivity to inhibition by increases of [Na+]i. Both channels displayed similar single channel conductances of 4 pS, and both were activated to a similar extent by reducing temperature, altogether indicating that activation of baseline conductance of α728βγ was likely mediated by enhanced channel activity or open probability. Expression of α728 in native kidneys was validated in human urinary exosomes. These data demonstrate that the long isoform of αENaC forms the structural basis of a channel with different activity and regulation, which may not be easily distinguishable in native tissue, but may underlie sodium hyperabsorption and salt sensitive differences in humans.  相似文献   

14.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

15.
A long isoform of the human Epithelial Sodium Channel (ENaC) α subunit has been identified, but little data exist regarding the properties or regulation of channels formed by α728. The baseline whole cell conductance of oocytes expressing trimeric α728βγ channels was 898.1 ± 277.2 and 49.59 ± 13.2 µS in low and high sodium solutions, respectively, and was 11 and 2 fold higher than the conductances of α669βγ in same solutions. α728βγ channels were also 2 to 5 fold less sensitive to activation by the serine proteases subtilisin and trypsin than α669βγ in low and high Na+ conditions. The long isoform exhibited lower levels of full length and cleaved protein at the plasma membrane and a rightward shifted sensitivity to inhibition by increases of [Na+]i. Both channels displayed similar single channel conductances of 4 pS, and both were activated to a similar extent by reducing temperature, altogether indicating that activation of baseline conductance of α728βγ was likely mediated by enhanced channel activity or open probability. Expression of α728 in native kidneys was validated in human urinary exosomes. These data demonstrate that the long isoform of αENaC forms the structural basis of a channel with different activity and regulation, which may not be easily distinguishable in native tissue, but may underlie sodium hyperabsorption and salt sensitive differences in humans.  相似文献   

16.
The results of neutron distance measurement involving ribosomal protein S1 from Escherichia coli are reported. These data provide a position for S1 on the small ribosomal subunit. They also indicate that S1, bound to the ribosome, has a radius of gyration of 60 to 65 Å, suggesting that its axial ratio in the bound state is similar to that it has as a free molecule in solution; namely, 10: 1. The implications of these results for our understanding of the mode of action of S1 are discussed.  相似文献   

17.
The ligand-binding region of integrin beta subunits contains a von Willebrand factor type A-domain: an alpha/beta "Rossmann" fold containing a metal ion-dependent adhesion site (MIDAS) on its top face. Although there is evidence to suggest that the betaA-domain undergoes changes in tertiary structure during receptor activation, the identity of the secondary structure elements that change position is unknown. The mAb 12G10 recognizes a unique cation-regulated epitope on the beta(1) A-domain, induction of which parallels the activation state of the integrin (i.e. competency for ligand recognition). The ability of Mn(2+) and Mg(2+) to stimulate 12G10 binding is abrogated by mutation of the MIDAS motif, demonstrating that the MIDAS is a Mn(2+)/Mg(2+) binding site and that occupancy of this site induces conformational changes in the A-domain. The cation-regulated region of the 12G10 epitope maps to Arg(154)/Arg(155) in the alpha1 helix. Our results demonstrate that the alpha1 helix undergoes conformational alterations during integrin activation and suggest that Mn(2+) acts as a potent activator of beta(1) integrins because it can promote a shift in the position of this helix. The mechanism of beta subunit A-domain activation appears to be distinct from that of the A-domains found in some integrin alpha subunits.  相似文献   

18.
G protein alpha subunits mediate activation of signaling pathways through G protein-coupled receptors (GPCR) by virtue of GTP-dependent conformational rearrangements. It is known that regions of disorder in crystal structures can be indicative of conformational flexibility within a molecule, and there are several such regions in G protein alpha subunits. The amino-terminal 29 residues of Galpha are alpha-helical only in the heterotrimer, where they contact the side of Gbeta, but little is known about the conformation of this region in the active GTP bound state. To address the role of the Galpha amino-terminus in G-protein activation and to investigate whether this region undergoes activation-dependent conformational changes, a site-directed cysteine mutagenesis study was carried out. Engineered Galpha(i1) proteins were created by first removing six native reactive cysteines to yield a mutant Galpha(i1)-C3S-C66A-C214S-C305S-C325A-C351I that no longer reacts with cysteine-directed labels. Several cysteine substitutions along the amino-terminal region were then introduced. All mutant proteins were shown to be folded properly and functional. An environmentally sensitive probe, Lucifer yellow, linked to these sites showed a fluorescence change upon interaction with Gbetagamma and with activation by AlF(4)(-). Other fluorescent probes of varying charge, size, and hydrophobicity linked to amino-terminal residues also revealed changes upon activation with bulkier probes reporting larger changes. Site-directed spin-labeling studies showed that the N-terminus of the Galpha subunit is dynamically disordered in the GDP bound state, but adopts a structure consistent with an alpha-helix upon interaction with Gbetagamma. Interaction of the resulting spin-labeled Galphabetagamma with photoactivated rhodopsin, followed by rhodopsin-catalyzed GTPgammaS binding, caused the amino-terminal domain of Galpha to revert to a dynamically disordered state similar to that of the GDP-bound form. Together these results suggest conformational changes occur in the amino-termini of Galpha(i) proteins upon subunit dissociation and upon activating conformational changes. These solution studies reveal insights into conformational changes that occur dynamically in solution.  相似文献   

19.
Gating by cGMP and voltage of the alpha subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 microM), the current displayed strong outward rectification. At low and high (700 microM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P(o). Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P(o) at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from -100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 microM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose-response relation at -100 mV was shifted to the right and saturated at significantly lower P(o) values with respect to that at +100 mV (0.77 vs. 0.96). P(o) was determined as function of the [cGMP] (at +100 and -100 mV) and voltage (at 20, 70, and 700 microM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately.  相似文献   

20.
The crystal structure of the free form of IF1 from Mycobacterium tuberculosis has been determined at 1.47 Å resolution. The structure adopts the expected OB fold and matches the high structural conservation among IF1 orthologues. In order to further explore the function of Mtb-IF1, we built a model of its interaction with the 30S ribosomal subunit based on the crystal structure of the complex from Thermus thermophilus. The model suggests that several functionally important side chain residues undergo large movements while the rest of the protein in complex shows only very limited conformational change as compared to its form in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号