首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Regulation of gene expression by the thyroid hormone receptor   总被引:13,自引:0,他引:13  
  相似文献   

3.
4.
5.
6.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

7.
8.
9.
10.
Neonatal hypothyroidism increases adult Sertoli cell populations by extending Sertoli cell proliferation. Conversely, hyperthyroidism induces premature cessation of Sertoli cell proliferation and stimulates maturational events like seminiferous tubule canalization. Thyroid hormone receptors alpha1 and beta1, which are commonly referred to as TRalpha1 and TRbeta1, respectively, are expressed in neonatal Sertoli cells. We determined the relative roles of TRalpha1 and TRbeta1 in the thyroid hormone effect on testicular development and Sertoli cell proliferation using Thra knockout (TRalphaKO), Thrb knockout (TRbetaKO), and wild-type (WT) mice. Triiodothyronine (T3) treatment from birth until Postnatal Day 10 reduced Sertoli cell proliferation to minimal levels in WT and TRbetaKO mice versus that in their untreated controls, whereas T3 had a diminished effect on TRalphaKO Sertoli cell proliferation. Seminiferous tubule patency and luminal diameter were increased in T3-treated WT and TRbetaKO testes. In contrast, T3 had no effect on these parameters in TRalphaKO mice. In untreated adult TRalphaKO mice, Sertoli cell number, testis weight, and daily sperm production were increased or trended toward an increase, but the increase in magnitude was smaller than that seen in WT mice following neonatal hypothyroidism. Conversely, in TRbetaKO mice, Sertoli cell number, testis weight, and daily sperm production were similar to those in untreated WT mice. In addition, Sertoli cell number and testis weight in adult WT and TRbetaKO mice showed comparable increases following hypothyroidism. Our results show that TRalphaKO mice have testicular effects similar to those seen in WT mice following neonatal hypothyroidism and that TRbetaKO mice, but not TRalphaKO mice, have normal Sertoli cell responsiveness to T3. Thus, effects of exogenous manipulation of T3 on neonatal Sertoli cell development are predominately mediated through TRalpha1.  相似文献   

11.
12.
13.
14.
Based on the examination of the crystal structure of rat TRbeta complexed with 3,5,3'-triiodo-l-thyronine (2) a novel TRbeta-selective indole derivative 6b was prepared and tested in vitro. This compound was found to be 14 times selective for TRbeta over TRalpha in binding and its beta-selectivity could be rationalized through the comparison of the X-ray crystallographic structures of 6b complexed with TRalpha and TRbeta.  相似文献   

15.
We have extensively characterized the sequences of the rat growth hormone (rGH) promoter required for induction by T3 (thyroid hormone, 3,5,3'-L-triiodothyronine) in a transient transfection system. Oligonucleotides containing portions of the rGH promoter sequence with various deletions and point mutations were placed upstream of the first 137 base pairs of the rGH promoter or the heterologous herpes virus thymidine kinase promoter in chloramphenicol acetyltransferase expression vectors. The rGH137 and thymidine kinase promoters show no or minimal response to T3 in the basal state. The constructs were tested in GH4C1 rat pituitary cells and COS cells (functionally deficient in thyroid hormone receptor) with and without a co-transfected plasmid expressing a beta type c-erbA gene coding for a functional T3 receptor. Oligonucleotides containing the T3 receptor binding site confer hormone-dependent induction in a manner that is independent of either orientation or variation in position on the helix relative to the promoter. Point mutations in the sequence -189 to -173 result in loss of T3 induction, and bases between -173 and -167 were also required for a full T3 response. The minimal length to confer T3 induction to the rGH promoter was 23 base pairs (-190 to -167). Point mutations creating a perfect duplication of 7 base pairs within the receptor binding site conferred 12-fold T3 response to the rGH137 promoter, 3-fold greater than the wild type rGH237 construct. T3 inductibility was also transferred to the thymidine kinase promoter by an oligonucleotide containing the sequence -200 to -157, demonstrating that cell type specific elements located 3' to 157 of the rGH promoter are not required for thyroid hormone responsiveness.  相似文献   

16.
In this communication, we wish to describe the discovery of a novel series of 6-azauracil-based thyromimetics that possess up to 100-fold selectivities for binding and functional activation of the beta(1)-isoform of the thyroid receptor family. Structure-activity relationship studies on the 3,5- and 3'-positions provided compounds with enhanced TR beta affinity and selectivity. Key binding interactions between the 6-azauracil moiety and the receptor have been determined through of X-ray crystallographic analysis.  相似文献   

17.
We have isolated and characterized a cDNA encoding a chicken beta homolog of c-erbA, or thyroid hormone receptor (TR). Chicken liver cDNA libraries were screened with a rat TR beta-1 cDNA probe, and several cDNA inserts were isolated and characterized. The sequence of one cDNA predicts a 369-amino-acid open reading frame (ORF), with a protein sequence that possesses 96% identity with that of rat TR beta-1, but only 88% identity with chicken TR alpha. These data indicate that the cDNA likely encodes a beta form of TR that has the expected putative DNA and T3 binding domains. The chicken TR beta (chTR beta) in vitro translated protein binds T3 with high affinity, and binds both the thyroid hormone response element (TRE) from the rat growth hormone gene and the Xenopus vitellogenin A2 gene estrogen response element (ERE), similarly to that of the rat TR beta-1. Northern blot analysis revealed the expression of a 7.0-kb RNA in several tissues including cerebellum, pituitary, kidney, and liver. This chicken liver TR beta cDNA sequence varies in both the 5' and 3' untranslated regions from the chicken kidney TR beta cDNA sequence recently reported (Forrest et al., 1990). The 5' untranslated cDNA sequence divergence occurs near a potential splice site junction of the human TR beta gene, suggesting that this chicken liver cDNA may represent an alternatively spliced RNA product of the chicken TR beta gene.  相似文献   

18.
19.

Background

Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic–pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels.

Scope of review

This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner.

Major conclusions

Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary–thyroid axis.

General significance

Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases.This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号