首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The light-harvesting complex II (LHCII) is the main energy absorber for photosynthesis in green plants, and its translocation between photosystems I and II is the primary means of energy redistribution between them. Using single-particle tracking, we performed the first measurement of the mobility of LHCII in the photosynthetic membranes in both the nonphosphorylated and the phosphorylated (P-LHCII) conformations. These are part of an important, reversible, energy re-equilibration process called the state transition. We found that the population of P-LHCII in unappressed membranes is more mobile than the population of non-P-LHCII from the same regions.  相似文献   

2.
A critical review of studies on import of Lhcb (apoproteins of LHC II) by chloroplasts uncovered a mechanism for initiation of assembly of light-harvesting complexes. Manipulation of in vivo systems and mutagenesis of specific residues in the protein showed that accumulation of physiological amounts of Lhcb by the plastid requires interaction of the protein with Chl within the inner membrane of the chloroplast envelope. Retention motifs, commonly -EXXHXR- in the first membrane-spanning region (helix-1) and -EXXNXR- in the third membrane-spanning region (helix-3), occur in the primary sequence of the protein. Mutations in these sequences prevent accumulation of Lhcb by isolated chloroplasts. We propose that the His or Asn sidechain and a transient intrahelix ion-pair with the Glu and Arg residues provide ligands for two molecules of Chl in each motif, which serve as a sensing mechanism for the availability of Chl. Interaction of two Chl molecules with both motifs is required for stable insertion of the protein into the membrane. Chl(ide) is possibly quenched by interaction with xanthophylls immediately after synthesis, and Chl-lutein pairs may initiate folding of Lhcb. Lhcb that does not immediately interact with sufficient Chl molecules is not retained by the organelle and, in vivo, is retracted into the cytosol or shunted to vacuoles for degradation rather than imported into the plastid stroma. The ubiquitous existence of retention motifs from small Lhcb-like polypeptides in cyanobacteria to all nuclear-encoded Chl-binding proteins (the Lhcb and Lhca families and related proteins) testify to the importance of these sequences in assembly of Chl-protein complexes.  相似文献   

3.
The functional domain size for efficient excited singlet state quenching was studied in artificial aggregates of the main light-harvesting complex II (LHCIIb) from spinach and in native thylakoid membranes by picosecond time-resolved fluorescence spectroscopy and quantum yield measurements. The domain size was estimated from the efficiency of added exogenous singlet excitation quenchers-phenyl-p-benzoquinone (PPQ) and dinitrobenzene (DNB). The mean fluorescence lifetimes τ(av) were quantified for a range of quencher concentrations. Applying the Stern-Volmer formalism, apparent quenching rate constants k(q) were determined from the dependencies on quencher concentration of the ratio τ(0)(av)/τ(av), where τ(0)(av) is the average fluorescence lifetime of the sample without addition of an exogenous quencher. The functional domain size was gathered from the ratio k(q)'/k(q), i.e., the apparent quenching rate constants determined in aggregates (or membranes), k(q)', and in detergent-solubilised LHCII trimers, k(q), respectively. In LHCII macroaggregates, the resulting values for the domain size were 15-30 LHCII trimers. In native thylakoid membranes the domain size was equivalent to 12-24 LHCII trimers, corresponding to 500-1000 chlorophylls. Virtually the same results were obtained when membranes were suspended in buffers promoting either membrane stacking or destacking. These domain sizes are orders of magnitude smaller than the number of physically connected pigment-protein complexes. Therefore our results imply that the physical size of an antenna system beyond the numbers of a functional domain size has little or no effect on improving the light-harvesting efficiency.  相似文献   

4.
We have found that treatment of the photosynthetic membranes of green plants, or thylakoids, with the nonionic detergent Triton X-114 at a 10:1 ratio has three effects: (a) photosystem I and coupling factor are solubilized, so that the membranes retain only photosystem II (PS II) and its associated light-harvesting apparatus (LHC-II); (b) LHC-II is crystallized, and so is removed from its normal association with PS II; and (c) LHC-II crystallization causes a characteristic red shift in the 77 degrees K fluorescence from LHC-II. Treatment of thylakoids with the same detergent at a 20:1 ratio results in an equivalent loss of photosystem I and coupling factor, with LHC-II and PS II being retained by the membranes. However, no LHC-II crystals are formed, nor is there a shift in fluorescence. Thus, isolation of a membrane protein is not required for its crystallization, but the conditions of detergent treatment are critical. Membranes with crystallized LHC-II retain tetrameric particles on their surface but have no recognizable stromal fracture face. We have proposed a model to explain these results: LHC-II is normally found within the stromal half of the membrane bilayer and is reoriented during the crystallization process. This reorientation causes the specific fluorescence changes associated with crystallization. Tetrameric particles, which are not changed in any way by the crystallization process, do not consist of LHC-II complexes. PS II appears to be the only other major complex retained by these membranes, which suggests that the tetramers consist of PS II.  相似文献   

5.
Resonance Raman excitation spectroscopy combined with ultra low temperature absorption spectral analysis of the major xanthophylls of higher plants in isolated antenna and intact thylakoid membranes was used to identify carotenoid absorption regions and study their molecular configuration. The major electronic transitions of the light-harvesting complex of photosystem II (LHCIIb) xanthophylls have been identified for both the monomeric and trimeric states of the complex. One long wavelength state of lutein with a 0-0 transition at 510 nm was detected in LHCIIb trimers. The short wavelength 0-0 transitions of lutein and neoxanthin were located at 495 and 486 nm, respectively. In monomeric LHCIIb, both luteins absorb around 495 nm, but slight differences in their protein environments give rise to a broadening of this band. The resonance Raman spectra of violaxanthin and zeaxanthin in intact thylakoid membranes was determined. The broad 0-0 absorption transition for zeaxanthin was found to be located in the 503-511 nm region. Violaxanthin exhibited heterogeneity, having two populations with one absorbing at 497 nm (0-0), 460 nm (0-1), and 429 nm (0-2), and the other major pool absorbing at 488 nm (0-0), 452 nm (0-1), and 423 nm (0-2). The origin of this heterogeneity is discussed. The configuration of zeaxanthin and violaxanthin in thylakoid membranes was different from that of free pigments, and both xanthophylls (notably, zeaxanthin) were found to be well coordinated within the antenna proteins in vivo, arguing against the possibility of their free diffusion in the membrane and supporting our recent biochemical evidence of their association with intact oligomeric light-harvesting complexes (Ruban, A. V., Lee, P. J., Wentworth, M., Young, A. J., and Horton, P. (1999) J. Biol. Chem. 274, 10458-10465).  相似文献   

6.
Plants need a highly responsive regulatory system to keep photosynthetic light reactions in balance with the needs and restrictions of the downstream metabolism. This mechanism optimises plant growth under naturally fluctuating light conditions. In this opinion article, we present a model addressing the biological role of the light intensity-controlled phosphorylation of light-harvesting complex II (LHCII) proteins and its relation with the non-photochemical quenching of excitation energy (NPQ). We overturn a long held view of the possible role of 'state transitions'. Instead, we discuss the interplay between LHCII protein phosphorylation and NPQ, a mechanism that is crucial for regulating excitation energy distribution to the two photosystems (PSII and PSI) and balancing the intersystem electron flow despite constant fluctuations in light intensity.  相似文献   

7.
The light-harvesting chlorophyll a/b complex (LHC II) and four photosystem II (PS II) core proteins (8.3, 32, 34 and 44 kDa) become phosphorylated in response to reduction of the intersystem electron transport chain of green plant chloroplasts. Previous studies indicated that reduction of the plastoquinone (PQ) pool is the key event in kinase activation. However, we show here that, unlike PS II proteins, LHC II is phosphorylated only when the cytochrome b6f complex is active. Two lines of evidence support this conclusion. (1) 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the 2,4-dinitrophenyl ether of iodonitrothymol (DNP-INT), which are known to block electron flow into the cytochrome complex, selectively inhibit LHC II phosphorylation in spinach thylakoids. (2) The hcf6 mutant of maize, which contains PQ but lacks the cytochrome b6f complex, phosphorylates the four PS II proteins but fails to phosphorylate LHC II in vivo or in vitro.  相似文献   

8.
Winter rye plants grown under contrasting environmental conditions or just transiently shifted to varying light and temperature conditions, were studied to elucidate the chloroplast signal involved in regulation of photosynthesis genes in the nucleus. Photosystem II excitation pressure, reflecting the plastoquinone redox state, and the phosphorylation level of thylakoid light-harvesting proteins (LHCII and CP29) were monitored together with changes occurring in the accumulation of lhcb, rbcS and psbA mRNAs. Short-term shifts of plants to changed conditions, from 1 h to 2 d, were postulated to reveal signals crucial for the initiation of the acclimation process. Comparison of these results with those obtained from plants acclimated during several weeks' growth at contrasting temperature and in different light regimes, allow us to make the following conclusions: (1) LHCII protein phosphoylation is a sensitive tool to monitor redox changes in chloroplasts; (2) LHCII protein phosphorylation and lhcb mRNA accumulation occur under similar conditions and are possibly coregulated via an activation state of the same kinase (the LHCII kinase); (3) Maximal accumulation of lhcb mRNA during the diurnal light phase seems to require an active LHCII kinase whereas inactivation of the kinase is accompanied by dampening of the circadian oscillation in the amount of lhcb mRNA; (4) Excitation pressure of photosystem II (reduction state of the plastoquinone pool) is not directly involved in the regulation of lhcb mRNA accumulation. Instead (5) the redox status of the electron acceptors of photosystem I in the stromal compartment seems to be highly regulated and crucial for the regulation of lhcb gene expression in the nucleus.  相似文献   

9.
《The Journal of cell biology》1989,109(4):1725-1731
The photosynthetic membranes of green plants are organized into stacked regions interconnected by nonstacked regions that have been shown to be biochemically and structurally distinct. Because the stacking process occludes the surfaces of appressed membranes, it has been impossible to conduct structural or biochemical studies of the outer surfaces of the photosynthetic membrane in regions of membrane stacking. Although stacking is mediated at this surface, it has not been possible to determine whether membrane components implicated in the stacking process, including a major light-harvesting complex (LHC-II), are in fact exposed at the membrane surface. We have been able to expose this surface for study in the electron microscope and directly label it with antibodies to determine protein exposure. The appearance of the newly exposed outer stacked surface highlights the extreme lateral heterogeneity of the photosynthetic membrane. The surface is smooth in contrast to the neighboring nonstacked surface that is covered with distinct particles. Although some investigators have suggested the existence of a cytochrome b6/f-rich boundary region between stacked and nonstacked membranes, our results provide no structural support for this concept. To explore the biochemical nature of the occluded membrane surface, we have used an mAb against the amino terminal region of the LHC-II. This mAb clearly labels the newly exposed outer stacked surface but does not label the inner surface or the outer nonstacked surface. These experimental results confirm the presence of the amino terminal region of this complex at the outer surface of the membrane in stacked regions, and also show that this complex is largely absent from nonstacked membranes.  相似文献   

10.
The functions of the light-harvesting complex of photosystem II (LHC- II) have been studied using thylakoids from intermittent-light-grown (IML) plants, which are deficient in this complex. These chloroplasts have no grana stacks and only limited lamellar appression in situ. In vitro the thylakoids showed limited but significant Mg2+-induced membrane appression and a clear segregation of membrane particles into such regions. This observation, together with the immunological detection of small quantities of LHC-II apoproteins, suggests that the molecular mechanism of appression may be similar to the more extensive thylakoid stacking seen in normal chloroplasts and involve LHC-II polypeptides directly. To study LHC-II function directly, a sonication- freeze-thaw procedure was developed for controlled insertion of purified LHC-II into IML membranes. Incorporation was demonstrated by density gradient centrifugation, antibody agglutination tests, and freeze-fracture electron microscopy. The reconstituted membranes, unlike the parent IML membranes, exhibited both extensive membrane appression and increased room temperature fluorescence in the presence of cations, and a decreased photosystem I activity at low light intensity. These membranes thus mimic normal chloroplasts in this regard, suggesting that the incorporated LHC-II interacts with photosystem II centers in IML membranes and exerts a direct role in the regulation of excitation energy distribution between the two photosystems.  相似文献   

11.
J P Dekker  H van Roon  E J Boekem 《FEBS letters》1999,449(2-3):211-214
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of seven trimeric light-harvesting complex II proteins. The complex was readily observed in partially-solubilized Tris-washed photosystem II membranes from spinach but was also found to occur, with a low frequency, in oxygen-evolving photosystem II membranes. The structure reveals six peripheral trimers with the same rotational orientation and a central trimer with the opposite orientation. We conclude that the heptamer represents a naturally occurring aggregation state of part of the light-harvesting complex II trimers in the thylakoid membranes.  相似文献   

12.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

13.
The localization of the plant-specific thylakoid-soluble phosphoprotein of 9 kDa, TSP9, within the chloroplast thylakoid membrane of spinach has been established by the combined use of fractionation, immunoblotting, cross-linking, and mass spectrometry. TSP9 was found to be exclusively confined to the thylakoid membranes, where it is enriched in the stacked grana membrane domains. After mild solubilization of the membranes, TSP9 migrated together with the major light-harvesting antenna (LHCII) of photosystem II (PSII) and with PSII-LHCII supercomplexes upon separation of the protein complexes by either native gel electrophoresis or sucrose gradient centrifugation. Studies with a cleavable cross-linking agent revealed the interaction of TSP9 with both major and minor LHCII proteins as identified by mass spectrometric sequencing. Cross-linked complexes that in addition to TSP9 contain the peripheral PSII subunits CP29, CP26, and PsbS, which form the interface between LHCII and the PSII core, were found. Our observations also clearly suggest an interaction of TSP9 with photosystem I (PSI) as shown by both immunodetection and mass spectrometry. Sequencing identified the peripheral PSI subunits PsaL, PsaF, and PsaE, originating from cross-linked protein complexes of around 30 kDa that also contained TSP9. The distribution of TSP9 among the cross-linked forms was found to be sensitive to conditions such as light exposure. An association of TSP9 with LHCII as well as the peripheries of the photosystems suggests its involvement in regulation of photosynthetic light harvesting.  相似文献   

14.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

15.
Experimental evidence indicates that the major pathway of retinoic acid metabolism in hamster liver microsomes follows the sequence: retinoic acid → 4-hydroxy-retinoic acid → 4-keto-retinoic acid → more polar metabolites. Using all-trans-[10-3H]retinoic acid, it can be shown by reverse-phase high pressure liquid chromatographic analysis that the first and last steps of this sequence require NADPH, whereas the oxidation of 4-hydroxy to 4-keto-retinoic acid is NAD+ (or NADP+) dependent. Both NADPH-dependent steps, but not the NAD+-dependent dehydrogenase reaction, are strongly inhibited by carbon monoxide. The metabolism of retinoic acid but not of 4-hydroxy-retinoic acid is highly dependent on the vitamin A regimen of the animal. Retinoic acid is rapidly metabolized by liver microsomes either from vitamin A-normal hamsters or from vitamin A-deficient hamsters that have been pretreated with retinoic acid, but not by microsomes from vitamin A-deficient animals; in direct contrast, the rate of metabolism of 4-hydroxy-retinoic acid is equivalent in each of these microsomal preparations. Analysis of the kinetics of these reactions yields the following Michaelis constants with respect to the retinoid substrates: retinoic acid, 1 × 10?6m; 4-hydroxy-retinoic acid, 2 × 10?5m; and 4-keto-retinoic acid, 1 × 10?7m. The 4-hydroxy to 4-keto-retinoic acid oxidation has been shown to be experimentally irreversible, to have a KmNAD+of 2 × 10?5m, to be strongly inhibited by NADH, and to be unaffected by the presence of retinoic acid or its 4-keto-derivative in an equimolar ratio to the 4-hydroxy-substrate.  相似文献   

16.
K. A. Santarius 《Planta》1986,168(2):281-286
Chloroplast thylakoid membranes isolated from spinach leaves (Spinacia oleracea L. cv. Monatol) were subjected to a freeze-thaw treatment in a buffered medium containing 70 mM KCl, 30 mM NaNO3 and 20 mM K2SO4 in different combinations. In the presence of the three predominant inorganic electrolytes, inactivation of photophosphorylation was mainly caused by a decrease in the capacity of the photosynthetic electron transport; release of proteins from the membranes was not manifest and light-induced H+ gradient and proton permeability were largely unaffected. Omission of nitrate from the medium had little effect. When either sulfate or chloride or both were omitted prior to freezing, inactivation of photophosphorylation was correlated with stimulation of the phosphorylating electron flow, marked increase in H+ permeability and loss of the ability of the thylakoids to accumulate protons in the light. In the absence of sulfate, uncoupling was mainly a consequence of the dissociation of chloroplast coupling factor (CF1). Partial restoration of proton impermeability and pH gradient occurred upon the addition of N,N-dicyclohexylcarbodiimide (DCCD). When sulfate was present but chloride omitted, CF1 remained attached to the membranes and the addition of DCCD had no effect, indicating that the increase in proton efflux was caused by a different mechanism. It is concluded that sulfate stabilizes the CF1 and prevents its release from the membranes, but KCl is also necessary for maintaining the low permeability of the membranes to protons. The importance of complex media for investigations on isolated biomembrane systems is stressed.Abbreviations CF1 chloroplast coupling factor - DCCD N,N-dicyclohexylcarbodiimide - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid I=Santarius 1986 b  相似文献   

17.
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl(2), an inhibitor of cytochrome b(6)f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b(6)f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

18.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   

19.
The functional state of the PS II population localized in the stroma exposed non-appressed thylakoid region was investigated by direct analysis of the PS II content of isolated stroma thylakoid vesicles. This PS II population, possessing an antenna size typical for PS II, was found to have a fully functional oxygen evolving capacity in the presence of an added quinone electron acceptor such as phenyl-p-benzoquinone. The sensitivity to DCMU for this PS II population was the same as for PS II in control thylakoids. However, under more physiological conditions, in the absence of an added quinone acceptor, no oxygen was evolved from stroma thylakoid vesicles and their PS II centers were found to be incapable to pass electrons to PS I and to yield NADPH. By comparison of the effect of a variety of added quinone acceptors with different midpoint potentials, it is concluded that the inability of PS II in the stroma thylakoid membranes to contribute to NADPH formation probably is due to that QA of this population is not able to reduce PQ, although it can reduce some artificial acceptors like phenyl-p-benzoquinone. These data give further support to the notion of a discrete PS II population in the non-appressed stroma thylakoid region, PS II, having a higher midpoint potential of QA than the PS II population in the appressed thylakoid region, PS II. The physiological significance of a PS II population that does not produce any NADPH is discussed.Abbreviations pBQ p-benzoquinone - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCIP 2,6-dichloroindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMBQ 2,5-dimethyl-p-benzoquinone - DQ duroquinone(tetramethyl-p-benzoquinone) - FeCN ferricyanide (potassium hexacyanoferrat) - MV methylviologen - NADPH,NADP+ reduced or oxidized form of nicotinamide adenine dinucleotide phosphate respectively - PpBQ phenyl-p-benzoquinone - PQ plastoquinone - PS II photosystem II - PS I photosystem I - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - E microEinstein  相似文献   

20.
This study investigated the regulation of major light harvesting chlorophyll a/b protein (LHCⅡ) phosphorylation by hypoosmotic shock in dark-adapted Dunaliella salina cells. When the external NaCI concentration decreased in darkness, D. salina LHCⅡ phosphorylation levels transiently dropped within 20 min and then restored gradually to basal levels. The transient decrease in LHCII phosphorylation levels was insensitive to NaF, a phosphatase inhibitor. Inhibition of intracellular ATP production by addition of an uncoupler or an ATP synthase inhibitor increased LHCⅡ phosphorylation levels in D. salina cells exposed to hypoosmotic shock. Taken together, these results indicate that hypoosmotic shock inhibits the LHCⅡ phosphorylation process. The related mechanism and physiological significance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号