首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The death rate kinetics of several sporeforming and nonsporeforming microorganisms, including radiation-resistant cocci, were determined by exposing them to a mixture of ethylene oxide and dichlorodifluoromethane (500 mg of ethylene oxide per liter, 30 to 50% relative humidity, and 54.4 C). Spore survivor curves obtained from tests of inoculated and exposed hygroscopic and nonhygroscopic carriers showed that the spores of Bacillus subtilis var. niger are more resistant to ethylene oxide than are spores of Clostridium sporogenes, B. stearothermophilus, and B. pumilus. The decimal reduction times (expressed as D values at 54.4 C-500 mg of ethylene oxide per liter) obtained under the test conditions for B. subtilis var. niger spores on hygroscopic and nonhygroscopic carriers exceeded the values obtained for the other organisms considered, both sporeformers and nonsporeformers. The decimal reduction times for the vegetative cells of the radiation-resistant organisms (Micrococcus radiodurans and two strains of Streptococcus faecalis) and the ATCC strain of S. faecalis demonstrated comparable resistance to ethylene oxide with the spores of C. sporogenes, B. stearothermophilus, and B. pumilus, but not those of B. subtilis var. niger.  相似文献   

3.
The relationships of reaction temperature and concentration of gaseous ethylene oxide to the time required for inactivation of air-dried Bacillus subtilis var. niger spores are more complex than previously reported. A plot of temperature vs. the logarithm of “thermochemical death time” (TCDT) resulted in a straight line between 18 and 57 C for systems of “high” ethylene oxide concentration. The TCDT values were independent of ethylene oxide concentrations above certain temperature-dependent limits. A given ethylene oxide concentration produced a TCDT curve identical in the upper temperature regions with that for higher concentrations. As the temperature was lowered beyond a critical point, this curve diverged from that for higher concentrations, as a straight line of lesser slope. Thus, a series of curves exists for a range of ethylene oxide concentrations. They are characterized by two segments, both logarithmic, intersecting at a critical temperature for each concentration. The intersecting point is at a temperature inversely related to the ethylene oxide gas concentration. The temperature quotient for the high temperature segments of all systems was 1.8. This value was characteristic for ethylene oxide concentrations of 440 and 880 mg/liter at temperatures above 40.6 and 33.4 C, respectively. Below these critical temperatures, the Q10 values for the respective systems were 3.2 and 2.3.  相似文献   

4.
The duration of the equilibration period between admission of water vapor and subsequent introduction of gaseous ethylene oxide to an evacuated sterilizer chamber was studied with respect to its effect on the inactivation of spores of Bacillus subtilis var. niger under simulated practical conditions. Introduction of a water-adsorbing cotton barrier between the spores and an incoming gas mixture of water vapor and ethylene oxide caused a marked increase in the observed thermochemical death time of the spore populations. This effect was negated by admission of water vapor one or more minutes prior to introduction of ethylene oxide gas. Increases in temperature and relative humidity of the system promoted passage of water vapor through the cotton barriers and diminished their effect.  相似文献   

5.
Although ethylene oxide is a reliable sterilizer, the process may be limited by diffusion. Thus, situations may exist where microorganisms are protected from the sterilizing gas. It is possible that the exterior of a substance may be sterilized, whereas the interior is not. We investigated three general types of materials in which this limitation of diffusion could occur: the bore of glass and plastic tubing, the center of cotton balls, and plastic adhesive film/paper backing interface. These materials were contaminated as close to their geometric center as possible with Bacillus subtilis var. niger spores occluded in crystals of sodium chloride. After exposure of the contaminated materials (except aluminum foil) to ethylene oxide, thioglycolate broth (a standard sterility-test medium) indicated sterility, whereas Trypticase Soy Broth indicated nonsterility. It is likewise possible that aerobic microorganisms, surviving in or on material after exposure to dry heat or steam sterilization processes, would not be recovered by thioglycollate broth. Entrapped aerobic organisms will probably not grow out in the low oxygen tension zone of an anaerobic medium such as thioglycollate broth. It is recommended than an aerobic medium such as Trypticase Soy Broth be used concurrently with thioglycolate broth for sterility testing.  相似文献   

6.
7.
8.
The 1980 identification of nitric oxide (NO) as an endothelial cell-derived relaxing factor resulted in an unprecedented biomedical research of NO and established NO as one of the most important cardiovascular, nervous and immune system regulatory molecule. A reduction in endothelial cell NO levels leading to “endothelial dysfunction” has been identified as a key pathogenic event preceding the development of hypertension, metabolic syndrome, and cardiovascular disease. The reduction in endothelial NO in cardiovascular disease has been attributed to the action of oxidants that either directly react with NO or uncouple its substrate enzyme. In this report, we demonstrate that uric acid (UA), the most abundant antioxidant in plasma, reacts directly with NO in a rapid irreversible reaction resulting in the formation of 6-aminouracil and depletion of NO. We further show that this reaction occurs preferentially with NO even in the presence of oxidants peroxynitrite and hydrogen peroxide and that the reaction is at least partially blocked by glutathione. This study shows a potential mechanism by which UA may deplete NO and cause endothelial dysfunction, particularly under conditions of oxidative stress in which UA is elevated and intracellular glutathione is depleted.  相似文献   

9.
Inactivation of Brain Tryptophan Hydroxylase by Nitric Oxide   总被引:3,自引:3,他引:0  
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by nitric oxide (NO) and by the NO generators sodium nitroprusside, diethylamine/NO, S -nitroso- N -acetylpenicillamine, and S -nitrosocysteine. The inactivation occurs in an oxygen-free environment and is enhanced by dithiothreitol and ascorbic acid. Protection against the effect of NO on tryptophan hydroxylase is afforded by oxyhemoglobin, reduced glutathione, and exogenous Fe(II). Catalase partially protects the enzyme from NO-induced inactivation, whereas both superoxide dismutase and uric acid are without effect. These findings indicate that tryptophan hydroxylase is a target for NO and suggest that critical iron-sulfur groups in this enzyme serve as the substrate for NO-induced nitrosylation of the protein, resulting in enzyme inactivation.  相似文献   

10.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

11.
A portable ethylene oxide sterilization chamber was designed, constructed, and tested for use in the sterilization of embolectomy catheters. The unit can accommodate catheters up to 40 inches (101.6 cm) in length and can be operated for less than 4 cents per cycle. A constant concentration of 500 mg of ethylene oxide per liter of space and holding periods of 4 and 6 hr at 43 and 22 C, respectively, were adequate when tested with B. subtilis spores. The estimated cost of construction was $165.00. If temperature control is unnecessary, the cost is approximately $80.00.  相似文献   

12.
13.
14.
A laboratory strain of poliovirus (LSc) became progressively more resistant to chlorine inactivation during a series of repeated sublethal exposures to the halogen.  相似文献   

15.
Extremely to slightly halophilic bacteria were tested for susceptibility to two sterilizing agents, peracetic acid (PAA) and ethylene oxide (ETO). PAA susceptibility was explored by two methods: an agar plate (constant pH of 7.2) and a filter strip (constant incubation period of 37 days); 100% susceptibility was obtained by both methods. The dosage (0.5 ml/min) was applied to a filter pad in a petri dish cover. Glove box experiments with ETO (input 1.5 lb. [ca. 680.4 g]/24 hr, the only constant) yielded 100% susceptibility for all halophiles tested. These experiments demonstrated the efficacy of two lethal agents for extreme halophiles, PAA and ETO. Variation in pH did not affect susceptibility.  相似文献   

16.
17.
Effect of Moisture on Ethylene Oxide Sterilization   总被引:14,自引:8,他引:6       下载免费PDF全文
Bacterial cells dehydrated beyond a critical point no longer react uniformly to ethylene oxide sterilization. The percentage of cells resistant to the lethal effect of ethylene oxide after desiccation is often as small as 0.1 to 0.001%. However, 5% resistant cells were observed with one type of microorganism dried in broth. The presence of organic matter increases the percentage of cells that become resistant to ethylene oxide after dehydration. The phenomenon is produced by exposing cells to a vacuum or a chemically desiccated atmosphere. It is not a permanent change, because the resistant cells rapidly become susceptible if wetted with water. On the other hand, mere exposure to a high relative humidity (RH), i.e., 75 to 98%, after desiccation requires 6 and 4 days, respectively, to overcome this resistance. Moisture studies showed that there is less water in bacterial cells that have been desiccated and then equilibrated to successively high RH values up to 100% RH, than in cells that have not been desiccated, but allowed to dry naturally until equilibrated to the same RH values.  相似文献   

18.
Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrPSc from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 106-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used.  相似文献   

19.
S ummary . The effect of sucrose or mixtures of sucrose and glucose, in the heating menstruum, on the heat resistance of 4 organisms, Salmonella senftenberg, Salm. typhimurium, Saccharomyces rouxii and Torulopsis globosa , was investigated and the results have been expressed in terms of D and z values against water activity ( aw ). The effect on the cell of sucrose solutions, both with and without heat, was also investigated. Measurements of cell volume obtained from phase contrast micrographs and of O.D. showed that as the sucrose concentration increased, the volume of the cell decreased. The increased heat resistance exhibited by cells in sucrose solutions of low aw is thought to be the result of a dehydration of the cell together with a reduction in the pore size of the cell wall.  相似文献   

20.
Spores of Bacillus subtilis var. niger, dried on nonhygroscopic and hygroscopic surfaces, were enclosed in one of four thicknesses of low-density polyethylene film (2, 4, 6, and 20 mils). The surfaces were then placed in a specially designed thermochemical death rate apparatus and exposed to an ethylene oxide concentration of 600 mg/liter (at 54.4 C) and 50% relative humidity. Survival data, including both spore survivor curves and decimal reduction values (expressed as D values at 54.4 C-600 mg of ethylene oxide per liter), demonstrated similar survivor patterns when the B. subtilis var. niger spores were enclosed in low-density polyethylene films 2, 4, and 6 mils thick. A comparison of these patterns with those of spores enclosed in glassine and subjected to identical exposure conditions revealed only slight variations. The use of 20-mil polyethylene film greatly increased the time required to kill B. subtilis var. niger spores under the exposure conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号