首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studying food partitioning of mammalian predators is important for understanding trophic structures and interactions between coexisting carnivore species. This is particularly pertinent in the light of expanding ranges of populations of generalist species whose habitat and diet overlap with more specialized species. Here, we tested the resource partitioning hypothesis in terrestrial carnivores, predicting that trophic niche breadth and overlap relate positively to body mass. We used dietary data from 18 terrestrial carnivore taxa in four families (Canidae, Mustelidae, Felidae and Ursidae; body mass 0.1–173.6 kg) in three regions in Central and Eastern Europe, i.e. deciduous forest and forest-steppe region (DFR), temperate deciduous and mixed forest region (MFR) and transitory mixed forest regions (TFR). We ranked carnivores along an axis of trophic niche (breadth and overlap), and analysed the relationship between trophic niche and body mass (or pair-wise difference in body mass). A hierarchical cluster analysis of diet composition divided carnivores into four ecological groups: wild ungulate predators; small-mammal predators; amphibians and small mammal predators and omnivores. The relationship between body mass of predators and both trophic niche breadth and trophic niche overlap were hump-shaped. The trophic niche breadth to body mass ratio was significantly lower in DFR than in TFR and trophic niche overlap was significantly higher in DFR than in MFR and TFR. The predominant food resource is small mammals whose abundance is related to local agricultural and forestry management practices. Modifications of management techniques can affect population dynamics and community composition of carnivore species, especially in the case of small-mammal predators.  相似文献   

2.
Aim A positive power relationship between maximal body mass and land area has previously been reported of the form Mmax ∝ Area0.5 whilst allometric scaling theory predicts either Mmax ∝ Area1.33 or Mmax ∝ Area1. We provide an analysis of the maximal mass–area relationship for four island systems, to test the hypothesis that community relaxation following isolation converges in each case to a slope of Area0.5. Location Islands of the Japanese archipelago, the western Mediterranean, the Sea of Cortés and Southeast Asia. Methods We calculated the relationship between island area and the maximal body mass of the largest mammal species on the island using linear regression models with log‐transformed variables, and tested the hypothesis that the slopes were not significantly different from 0.5. Results We found a slope of 0.47 within the Japanese archipelago, 0.42 for western Mediterranean islands, 0.73 for the Sea of Cortés islands and 0.50 for Southeast Asian islands. None of these slopes were significantly different from 0.5. Main conclusions Our results provide further empirical support for previous findings of a general maximal body mass–area relationship of Mmax ∝ Area0.5, but they deviate from theoretical predictions. We hypothesize that this mass–area relationship was the ultimate end point of community relaxation initiated by the isolation of the mammal communities. Maximal body mass on each island today probably reflects the interaction between energetic constraints, home range size and island area.  相似文献   

3.
Aim To test the ‘more individuals hypothesis’ as a mechanism for the positive association between energy availability and species richness. This hypothesis predicts that total density and energy use in communities is linearly related to energy availability, and that species richness is a positive function of increased density. We also evaluate whether similar energy–density patterns apply to different migratory groups (residents, short‐distance migrants and tropical migrants) separately. Location European and North American forest bird communities. Methods We collected published breeding bird census data from Europe and North America (n = 187). From each census data we calculated bird density (pairs 10 ha?1), energy use by the community (the sum of metabolic needs of individuals, Watts 10 ha?1) and geographical location with an accuracy of 0.5°. For each bird census data coordinate we extracted the corresponding monthly values of actual evapotranspiration (AET). From these values we calculated corresponding AET values that we expected to explain the density energy use of forest birds: total annual, breeding season (June) and winter AET. We used general linear modelling to analyse these data controlling for the area of census plots, forest type and census method. Results Total density and energy use in European and North American forest bird communities were linear functions of annual productivity, and increased density and energy use then translated into more species. Also resident bird density and energy consumption were positive functions of annual productivity, but the relationship between productivity and density as well as between productivity and energy use was weaker for migrants. Main conclusions Our results are consistent with the more individuals hypothesis that density and energy use in breeding forest bird communities is coupled tightly with the productivity of the environment, and that increased density and energy consumption results in more species. However, not all community members (migratory groups) are limited by productivity on the breeding grounds.  相似文献   

4.
Global regressions of ecological population densities on body mass for mammals and for terrestrial animals as a whole show that local population energy-use is approximately independent of adult body mass—over a body mass range spanning more than 11 orders of magnitude. This independence is represented by the slope of the regressions approximating –0.75, the reciprocal of the way that individual metabolic requirements scale with body mass. The pattern still holds for mammalian primary consumers when the data are broken down by geographic area, by broad habitat-type and by individual community. Slopes for mammalian secondary consumers are also not statistically distinguishable from –0.75. For any given body mass temperate herbivores maintain on average population densities of 1.5 to 2.0 times those of tropical ones, though slopes do not differ. Terrestrial animals of all sizes exhibit approximately the same range of population energy-use values. These results agree with those reported for population energy-budgets. It is suggested that rough independence of body mass and the energy-use of local populations is a widespread rule of animal ecology and community structure.  相似文献   

5.
Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species'' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.  相似文献   

6.
Aim The theory of island biogeography predicts species richness based on geographical factors that influence the extinction–colonization balance, such as area and isolation. However, human influence is the major cause of present biotic changes, and may therefore modify biogeographical patterns by increasing extinctions and colonizations. Our aim was to evaluate the effect of human activities on the species richness of reptiles on islands. Location Islands in the Mediterranean Sea and Macaronesia. Methods Using a large data set (n = 212 islands) compiled from the literature, we built spatial regression models to compare the effect of geographical (area, isolation, topography) and human (population, airports) factors on native and alien species. We also used piecewise regression to evaluate whether human activities cause deviation of the species–area relationship from the linear (on log–log axes) pattern, and path analysis to reveal the relationships among multiple potential predictors. Results The richness of both native and alien species was best explained by models combining geographical and human factors. The richness of native species was negatively related to human influence, while that of alien species was positively related, with the overall balance being negative. In models that did not take into account human factors, the relationship between island area and species richness was not linear. Large islands hosted fewer native species than expected from a linear (on log–log axes) species–area relationship, because they were more strongly affected by human influence than were small islands. Path analysis showed that island size has a direct positive effect on reptile richness. However, area also had a positive relationship with human impact, which in turn mediated a negative effect on richness. Main conclusion Anthropogenic factors can strongly modify the biogeographical pattern of islands, probably because they are major drivers of present‐day extinctions and colonizations and can displace island biodiversity from the equilibrium points expected by theory on the basis of geographical features.  相似文献   

7.
Pattern and process in the geographical ranges of freshwater fishes   总被引:2,自引:0,他引:2  
North American freshwater fishes were studied to determine whether they displayed the same relationships between log (geographical range size) and log (body size) and the same pattern of range shape as found among North American birds and mammals. The forces that produce these patterns were also investigated. The log (geographical range size) : log (body size) relationship was analysed for 121 North American freshwater fish species. Thirty‐two imperilled species were compared with 89 non‐imperilled species to determine if the overall relationship could result from differential extinction. Range geometries were analysed, within and among habitat guilds, to determine if general patterns could be detected. The log (geographical range size) : log (body size) pattern among freshwater fish species was triangular and qualitatively similar to that found for North American birds and mammals. The results suggest that below a minimum geographical range, the likelihood of extinction increases dramatically for freshwater fishes and that this minimum range size increases with body size. The pattern of fish species’ range shapes differs from that found for other North American vertebrate taxa because, on average, fish possess much smaller ranges than terrestrial species and most fish species’ geographical ranges extend further on a north–south axis than on an east–west axis. The log (geographical range size) : log (body size) pattern reveals that fish species’ geographical ranges are more constrained than those of terrestrial species. The triangular relationship may be caused by differential extinction of species with large bodies and small geographical ranges as well as higher speciation rates of small‐bodied fish. The restricted geographical ranges of freshwater fishes gives them much in common with terrestrial species on oceanic islands. Range shape patterns within habitat guilds reflect guild‐specific historical and current ecological forces. The overall pattern of range shapes emerges from the combination of ecologically different subunits.  相似文献   

8.
Fragmentation is a major threat factor for plant–frugivore communities in tropical and subtropical forests. Resulting changes in the distribution of traits within these communities, e.g., a loss in large‐bodied frugivores, may lead to strong changes in plant–frugivore interactions in fragmented forests. Yet, we still lack a thorough understanding of the interplay between forest fragmentation, the trait‐composition of communities and resulting plant–frugivore interactions on a community‐scale. In a fragmented South African landscape comprising different forest categories—i.e., continuous natural forest, forest fragments surrounded by natural grassland, and forest fragments surrounded by sugarcane—we investigated the relationship between communities of fruiting plants and their frugivore visitors in response to forest fragmentation, as well as the interactive effects of forest fragmentation and fruit size of the plants on the number of frugivore visitors and their body size. Neither the fruit size of plant nor the body mass of frugivore communities differed between natural forest sites and forest fragments. Moreover, in‐depth analyses of frugivore assemblages visiting plant species revealed no effect of forest category on the number of frugivore visits or their mean body mass. The number of visits and body mass of frugivores were merely determined by the crop and fruit size of the focal plant species. Overall, our results suggest that frugivory of plant species with differently sized fruits was not reduced in forest fragments. Thus, fragments with high fruit availability may be key elements maintaining the functional connectivity of a heterogeneous forest landscape.  相似文献   

9.
Whether basal metabolic rate‐body mass scaling relationships have a single exponent is highly discussed, and also the correct statistical model to establish relationships. Here, we aimed (1) to identify statistically best scaling models for 17 mammalian orders, Marsupialia, Eutheria and all mammals, and (2) thereby to prove whether correcting for differences in species’ body temperature and their shared evolutionary history improves models and their biological interpretability. We used the large dataset from Sieg et al. (The American Naturalist 174 , 2009, 720) providing species’ body mass (BM), basal metabolic rate (BMR) and body temperature (T). We applied different statistical approaches to identify the best scaling model for each taxon: ordinary least squares regression analysis (OLS) and phylogenetically informed analysis (PGLS), both without and with controlling for T. Under each approach, we tested linear equations (log‐log‐transformed data) estimating scaling exponents and normalization constants, and such with a variable normalization constant and a fixed exponent of either ? or ¾, and also a curvature. Only under temperature correction, an additional variable coefficient modeled the influence of T on BMR. Except for Pholidata and Carnivora, in all taxa studied linear models were clearly supported over a curvature by AICc. They indicated no single exponent at the level of orders or at higher taxonomic levels. The majority of all best models corrected for phylogeny, whereas only half of them included T. When correcting for T, the mathematically expected correlation between the exponent (b) and the normalization constant (a) in the standard scaling model y = a x b was removed, but the normalization constant and temperature coefficient still correlated strongly. In six taxa, T and BM correlated positively or negatively. All this hampers a disentangling of the effect of BM, T and other factors on BMR, and an interpretation of linear BMR‐BM scaling relationships in the mammalian taxa studied.  相似文献   

10.
This data paper reports census data of ground-dwelling beetle and other fauna of the forest floor environment; collections were made from a network of 22 forest sites in Japan. To our knowledge, this represents the largest dataset for long-term monitoring of a ground-dwelling beetle community and other taxa in a ground environment in forests, which covers a broad climatic range in the temperate zone and is freely available. The network forms part of the Monitoring Sites 1000 Project launched by the Ministry of the Environment, Japan. It covers subalpine, cool- and warm-temperate and subtropical climatic zones and the four major forest types of Japan. Thirty-three permanent plots usually 1 ha in size were established in old-growth, secondary natural and a few plantation forests. Censuses of the ground-dwelling beetle community were conducted using pitfall trapping and forest floor environment monitoring every year from 2004 to the present. During the initial 9 years of the census (2004–2012), 59,762 beetle individuals (including 3182 larvae) of more than 314 species were recorded. This dataset includes taxonomy and biomass of each beetle individual and each taxonomic group of other invertebrates coincidently captured in pitfall trapping. The dataset also includes data related to ground coverage by forest floor vegetation, dry mass of the accumulated organic litter layer, and carbon and nitrogen contents and cellulose decomposition rate in organic layer and surface mineral soil. The data could be used to investigate geographical patterns and intra- and inter-annual dynamics of individual body mass, populations and community structures of ground-dwelling beetles, and their relationships with the forest floor environment. Furthermore, the data could be analyzed with other open datasets related to tree community dynamics and litter fall continuously measured in the same study plots. This dataset also provides information related to the distribution and average body mass of each beetle species.  相似文献   

11.
An organism''s body size plays an important role in ecological interactions such as predator–prey relationships. As predators are typically larger than their prey, this often leads to a strong positive relationship between body size and trophic position in aquatic ecosystems. The distribution of body sizes in a community can thus be an indicator of the strengths of predator–prey interactions. The aim of this study was to gain more insight into the relationship between fish body size distribution and trophic position in a wide range of European lakes. We used quantile regression to examine the relationship between fish species'' trophic position and their log‐transformed maximum body mass for 48 fish species found in 235 European lakes. Subsequently, we examined whether the slopes of the continuous community size distributions, estimated by maximum likelihood, were predicted by trophic position, predator–prey mass ratio (PPMR), or abundance (number per unit effort) of fish communities in these lakes. We found a positive linear relationship between species'' maximum body mass and average trophic position in fishes only for the 75% quantile, contrasting our expectation that species'' trophic position systematically increases with maximum body mass for fish species in European lakes. Consequently, the size spectrum slope was not related to the average community trophic position, but there were negative effects of community PPMR and total fish abundance on the size spectrum slope. We conclude that predator–prey interactions likely do not contribute strongly to shaping community size distributions in these lakes.  相似文献   

12.
Aiming to understand the relationship between body mass and abundance, a community of middle-sized and larger mammals was studied in a seasonally dry forest in the far north of the Brazilian Amazonia. Diurnal and nocturnal surveys were carried out by the line-transect method along a 10-km transect. Data were collected on density, biomass, use of forest types, forest strata, diet and feeding strategies by the mammals. Biomass explained animal abundance better than did body mass across the two forest types: Terra Firme forest and mixed forest. There was a statistically significant positive relationship between the biomass of all the 33 mammals studied and group density, as well as between biomass and group size, in both forests. When terrestrial and arboreal mammals, and also different feeding guilds were considered separately, they exhibited very similar results, where biomass alone was positively associated with group density and group size. The slope of the relationships between body mass and group density, body mass and group size, biomass and group density, and biomass and group size varied considerably, with significant scatter around the regression line. Food and food competition shaped the relationship between animal mass and abundance, and this relationship can even vary widely between assemblages. As a result of competition for the available resources, group density increased with increasing biomass.  相似文献   

13.
In an ecological community, groups of species may or may not have a nested structure. Furthermore, any nested structure detected could have several causes, each of which would have to be identified, since they may have important theoretical and management implications. In this paper, I assessed the nested structure of bird communities using cloud forest fragments in eastern Mexico to identify bird species and groups of species sensitive to cloud forest fragmentation. Sensitive species were expected to have a nested arrangement highly correlated with forest fragmentation intensity. Analysis identified the following groups of birds as showing a nested structure highly correlated with cloud forest fragmentation: birds with a body mass between 100 and 300 g and larger than 600 g, some trophic behavioural guilds (terrestrial granivore, terrestrial granivore–frugivore, understory granivore–frugivore, arboreal granivore–frugivore, gleaning terrestrial insectivore, gleaning understory insectivore, cliff gleaning insectivore, nocturnal aerial insectivore, diurnal raptor, nocturnal raptor, terrestrial omnivore, scavenger), forest interior and generalist birds, species restricted to cloud forest, and threatened species. This study shows that the analysis of the nested species assemblage can be considered a useful tool to identify species sensitivity to ecological or landscape patterns and processes, in this case, species or groups of species affected by a fragmented landscape pattern.  相似文献   

14.
Patterns in the relationships among the range, abundance, and distribution of species within a biome are of fundamental interest in ecology. A self-similarity condition, imposed at the community level and previously demonstrated to lead to the power-law form of the species-area relationship, is extended to the species level and shown to predict testable power-law relationships between range size and both species abundance and area of census cell across scales of spatial resolution. The predicted slopes of plots of log(range size) versus log(abundance) are shown to be in good agreement with data from British breeding bird and mammal censuses and with data on the distribution of fern species in old-growth forest. The predicted slopes of plots of log(range size) versus log (area of census cell) are consistent with the limited available data for British plant species. Self-similarity provides a testable theoretical framework for a unified understanding of patterns among the range, abundance, and distribution of species.  相似文献   

15.
SUMMARY.
  • 1 It has been proposed that population density is allometrically related to body size for a wide range of animal species. An interesting question is whether this applies to species within a specific community or trophic guild, thus constituting a ‘pattern’ of community structure.
  • 2 Density-body size allometry can be translated into the relationship between population biomass (B) and population density (N). If the regression coefficient b in log B = a + b log N approximates 1, there is no allometric relation between density and body size.
  • 3 Data from an epiphytic chironomid community show b~1, thus indicating that no density-body size allometry exists in this community.
  • 4 Biomass is less equitably distributed than numbers among species in this and many other communities.
  • 5 There is some difficulty in extending the logic of the density-body size allometry to many invertebrate communities, where body size is a strongly time-dependent, variable trait.
  相似文献   

16.
Trophic level scales positively with body size in fishes   总被引:1,自引:0,他引:1  
Aim The existence of a body size hierarchy across trophic connections is widely accepted anecdotally and is a basic assumption of many food‐web models. Despite a strong theoretical basis, empirical evidence has been equivocal, and in general the relationship between trophic level and body size is often found to be weak or non‐existent. Location Global (aquatic). Methods Using a global dataset for fishes ( http://www.fishbase.org ), we explored the relationship between body size and trophic position for 8361 fishes in 57 orders. Results Across all species, trophic position was positively related to maximum length (r2= 0.194, b= 0.065, P < 0.0001), meaning that a one‐level increase in trophic level was associated with an increase in maximum length by a factor of 183. On average, fishes in orders that showed significantly positive trophic level–body size relations [mean = 51.6 cm ± 11.8 (95% confidence interval, CI)] were 86 cm smaller than fishes in orders that showed no relation [mean = 137.1 cm ± 50.3 (95% CI), P < 0.01]. A separate slopes model ANCOVA revealed that maximum length and trophic level were positively correlated for 47% (27 of 57) of orders, with two more orders showing marginally non‐significant positive relations; no significant negative correlations were observed. The full model (order × body size) explained 37% of the variation between body size and trophic position (P < 0.0001). Main conclusions Our results support recent models which suggest that trophic level and body size should be positively correlated, and indicate that morphological constraints associated with gape limitation may play a stronger role in determining body size in smaller fishes. Differences among orders suggest that the nature of the trophic level–body size relation may be contingent, in part, on evolutionary history.  相似文献   

17.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

18.
Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three techniques were used to survey communities: (1) observation of fruiting structures; (2) culturing on media; and (3) cloning and sequencing of ITS rDNA. Fruit body surveys detected the smallest number of species (18, 3.8 per log), DNA-based methods detected the most species (72, 31.7 per log), and culturing detected an intermediate number (23, 7.2 per log). Initial colonizer affected community development and inoculation with F. pinicola led to significantly greater mass loss. Relationships among fungal community composition, community richness and mass loss are complex and further work is needed to determine whether simplification of fungal communities affects carbon sequestration in forests.  相似文献   

19.
Aim Species–area relationships are often applied, but not generally approved, to guide practical conservation planning. The specific species group analysed may affect their applicability. We asked if species–area curves constructed from extensive databases of various sectors of natural resource administration can provide insights into large‐scale conservation of boreal forest biodiversity if the analyses are restricted only to red‐listed species. Location Finland, northern Europe. Methods Our data included 12,645 records of 219 red‐listed Coleoptera and Fungi from the whole of Finland. The forest data also covered the entire country, 202,761 km2. The units of species–area analyses were 224 municipalities where the red‐listed forest species have been observed. We performed a hierarchical partitioning analysis to reveal the relative importance of different potential explanatory variables. Based on the results, for all red‐listed species, species associated with coniferous trees and for Fungi, the area of economically over‐aged forests explained the best the variation in data. For species associated with deciduous trees and Coleoptera, the forest area explained better variation in data than the area of old forests. In the subsequent log–log species–area regression analyses, we used the best variables as the explanatory variable for each species group. Results There was a strong relationship between the number of all red‐listed species and the area of old forests remaining, with a z‐value of 0.45. The area explained better the number of species associated with conifer trees and Fungi than the number of species associated with deciduous trees and Coleoptera. Main conclusions The high z‐values of species–area curves indicate that the remaining old‐growth patches constitute a real archipelago for the conifer‐associated red‐listed species, since lower values had been expected if the surrounding habitat matrix were a suitable habitat for the species analysed.  相似文献   

20.
The Uruguay River starts in Serra do Mar in Brazil runs through the Paranense forest and flows southward through grassland and savannas. It has a continuous gallery forest of 750 km from the southern border of the Paranense forest to the river mouth. The gallery forest extends for 100 km more along the Río de la Plata. 125 (68.7%) of the 182 species of forest birds recorded in the southern Paranense forest penetrate into the gallery forest of the Uruguay River and only 13 (7.1%) reach the end of the gallery forest (Punta Lara). The number of bird species is inversely correlated (r2 = 0.942) with distance and the slope of the regression is 58.10. This means a decline in diversity with 32% of species lost per unit distance. A hundred and eighty forest tree species were recorded in the southern Paranense forest, of which 113 (62.8%) penetrate into the gallery forest of the Uruguay River, and 28 (15.6%) reach Punta Lara. The number of tree species is inversely correlated (r2 = 0.976) with distance and the slope of the regression is ?45.62. This means a decline in diversity with 25% of species lost per unit distance. The Uruguay River enables the dispersal of many species of forest birds and trees from the rain forest, but species richness tends to decrease with increased distance from the source area. A clear association pattern was found for birds between size, diet, habitat use and distance reached into the gallery forest. Species of smaller body size, granivores, insectivores and those that use both the interior and exterior parts of the gallery forest advanced noticeably further along the river than larger species, carnivores, nectarivores or frugivores, and those that frequent only a part of the forest. Similarly, a clear association between dispersal mechanism, water dependence and distance reached into the gallery forest was found for trees. Species with vegetative reproduction, zoochorous species and riparian species advanced markedly longer distances along the river than, anemochorous species and non‐riparian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号