首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
A specific antiserum to the noncatalytic part of cellobiohydrolase I fromTrichoderma reesei was obtained by exhaustion of rabbit antiserum to the native enzyme with its catalytic domain prepared by papain treatment of cellobiohydrolase I tightly adsorbed onto microcrystalline cellulose.  相似文献   

2.
A specific antiserum to the noncatalytic part of cellobiohydrolase I from Trichoderma reesei was obtained by exhaustion of rabbit antiserum to the native enzyme with its catalytic domain prepared by papain treatment of cellobiohydrolase I tightly adsorbed onto microcrystalline cellulose.  相似文献   

3.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex, CexCBDCbhI, the catalytic domain of Cex (p33), and CbhI to bacterial microcrystalline cellulose (BMCC) were 14.9, 7.8, 0.8, and 10.6 liters g-1, respectively. Cex and CexCBDCbhI had similar substrate specificities and similar activities on crystalline and amorphous cellulose. Both released predominantly cellobiose and cellotriose from amorphous cellulose. CexCBDCbhI was two to three times less active than Cex on BMCC, but significantly more active than Cex on soluble cellulose and on xylan. Unlike Cex, the hybrid protein neither bound to alpha-chitin nor released small particles from dewaxed cotton fibers.  相似文献   

4.
Sequence analysis of a Paenibacillus sp. BP-23 recombinant clone coding for a previously described endoglucanase revealed the presence of an additional truncated ORF with homology to family 48 glycosyl hydrolases. The corresponding 3509-bp DNA fragment was isolated after gene walking and cloned in Escherichia coli Xl1-Blue for expression and purification. The encoded enzyme, a cellulase of 1091 amino acids with a deduced molecular mass of 118 kDa and a pI of 4.85, displayed a multidomain organization bearing a canonical family 48 catalytic domain, a bacterial type 3a cellulose-binding module, and a putative fibronectin-III domain. The cloned cellulase, unique among Bacillales and designated Cel48C, was purified through affinity chromatography using its ability to bind Avicel. Maximum activity was achieved at 45 degrees C and pH 6.0 on acid-swollen cellulose, bacterial microcrystalline cellulose, Avicel and cellodextrins, whereas no activity was found on carboxy methyl cellulose, cellobiose, cellotriose, pNP-glycosides or 4-methylumbeliferyl alpha-d-glucoside. Cellobiose was the major product of cellulose hydrolysis, identifying Cel48C as a processive cellobiohydrolase. Although no chromogenic activity was detected from pNP-glycosides, TLC analysis revealed the release of p-nitrophenyl-glycosides and cellodextrins from these substrates, suggesting that Cel48C acts from the reducing ends of the sugar chain. Presence of such a cellobiohydrolase in Paenibacillus sp. BP-23 would contribute to widen up its range of action on natural cellulosic substrates.  相似文献   

5.
From the culture filtrate of Trichoderma reesei we have isolated a novel endoglucanase (38 kDa) which was shown to be identical to endoglucanase III (E III, 50 kDa), but lacking the first 61 N-terminal amino acids. This core protein, designated E III core, is fully active against soluble substrates, such as carboxymethylcellulose, whereas both activity against and adsorption to microcrystalline cellulose (Avicel) is markedly decreased. Sedimentation velocity experiments revealed that the intact E III enzyme has much higher asymmetry than the E III core protein, suggesting that the N-terminal region split off constitutes a protruding part of the native enzyme. These results lead to the proposal that native E III consists of two functionally separated domains: a catalytically active core and a protruding N-terminal domain which acts in the binding to insoluble cellulose. The N-terminal peptide missing in E III core corresponds to the heavily glycosylated common structural element found also in the N-terminus of cellobiohydrolase II and in the C-termini of cellobiohydrolase I and endoglucanase I. A similar bifunctional organization could thus be the rule for Trichoderma cellulases, endoglucanases as well as cellobiohydrolases.  相似文献   

6.
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.  相似文献   

7.
嗜热毛壳菌Chaetomium thermophilum CT2是一种土壤腐生菌,可产生具有重要工业生产价值的纤维素酶类。RACE-PCR获得嗜热毛壳菌纤维二糖水解酶Ⅱ(CBHⅡ)的编码基因(cbh2)。DNA序列分析表明cbh2的开放阅读框由1428个碱基组成,编码476个氨基酸。推断的氨基酸序列包含一个典型真菌纤维素酶的糖结合域(CBD)、催化域(CD)以及二者之间富含脯氨酸和羟基氨基酸的连接桥。根据氨基酸序列推算该酶分子量为53kD,属于糖苷水解酶第六家族,具有该家族催化保守区的典型特征。PCR扩增cbh2的成熟蛋白编码基因,利用基因重组的方法构建可在毕赤酵母分泌表达系统中表达纤维二糖水解酶蛋白的重组表达载体,并转化毕赤酵母得到重组子。在毕赤酵母醇氧化酶AOX1基因启动子的作用下,重组蛋白得到高效表达,小规模发酵量达1.2 mg/mL。经硫酸铵沉淀、DEAESepharose Fast flow阴离子层析等步骤纯化了该重组表达蛋白。SDS-PAGE得到重组蛋白分子量为67kD,与从嗜热毛壳菌中纯化的该酶分子量一致。该重组纤维二糖水解酶作用的最适合温度50℃,最适pH4.0,在70℃的半衰期为30min,具有较好的热稳定性。  相似文献   

8.
Analysis of a carboxymethyl-cellulase clone isolated from the cDNA library of the ruminal fungus, Piromyces rhizinflata 2301, revealed that the clone encoded a polypeptide containing a cellulase catalytic domain, designated CelAcd. CelAcd was flanked by a 28-amino acid linker peptide at the N-terminus and linked to a dockerin domain by a 7-amino acid linker at the C-terminus. CelAcd showed homology with the family 5 of glycosyl hydrolases. CelAcd plus the linker peptides at both termini (designated CelcdN'C') was expressed in Escherichia coli and the purified enzyme was characterized. The feature of particular interest of CelcdN'C' was its bifunctional endo- and exo-glucanase activity, demonstrated by its ability to hydrolyse carboxymethyl cellulose (CMC) and pNP-beta-D-cellobioside. Furthermore, CelcdN'C' exhibited relatively high ability to degrade both microcrystalline Avicel and filter paper. CelcdN'C' also showed activity against barley beta-glucan, Lichenin and oat spelt xylan. The optimal activity conditions for CelcdN'C' with CMC as the substrate were pH 5.5 and 50 degrees C. Fifty percent of the enzyme activity was lost when CelcdN'C' was treated at 55 degrees C for 10 min. CelcdN'C' retained more than 10% enzyme activity after being heated under 90 degrees C for 10 min. Deletion of the N-terminal flanking linker of CelcdN'C' (the resulting protein was designated CelcdC') did not alter the enzymatic function of the catalytic domain. However, the thermal stability of CelcdC' was dramatically reduced. We conclude that the N-terminal flanking linker of CelAcd stabilizes the enzyme protein.  相似文献   

9.
Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed alpha- helices and beta-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of 50 degrees C with specific activities against Avicel and p-nitrophenyl-β-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.  相似文献   

10.
The role of a miniscaffolding protein, miniCipC1, forming part of Clostridium cellulolyticum scaffolding protein CipC in insoluble cellulose degradation was investigated. The parameters of the binding of miniCipC1, which contains a family III cellulose-binding domain (CBD), a hydrophilic domain, and a cohesin domain, to four insoluble celluloses were determined. At saturating concentrations, about 8.2 micromol of protein was bound per g of bacterial microcrystalline cellulose, while Avicel, colloidal Avicel, and phosphoric acid-swollen cellulose bound 0.28, 0.38, and 0.55 micromol of miniCipC1 per g, respectively. The dissociation constants measured varied between 1.3 x 10(-7) and 1.5 x 10(-8) M. These results are discussed with regard to the properties of the various substrates. The synergistic action of miniCipC1 and two forms of endoglucanase CelA (with and without the dockerin domain [CelA2 and CelA3, respectively]) in cellulose degradation was also studied. Although only CelA2 interacted with miniCipC1 (K(d), 7 x 10(-9) M), nonhydrolytic miniCipC1 enhanced the activities of endoglucanases CelA2 and CelA3 with all of the insoluble substrates tested. This finding shows that miniCipC1 plays two roles: it increases the enzyme concentration on the cellulose surface and enhances the accessibility of the enzyme to the substrate by modifying the structure of the cellulose, leading to an increased available cellulose surface area. In addition, the data obtained with a hybrid protein, CelA3-CBD(CipC), which was more active towards all of the insoluble substrates tested confirm that the CBD of the scaffolding protein plays an essential role in cellulose degradation.  相似文献   

11.
We investigated the mechanism for non-proteolytic activation of human prorenin using five kinds of antibodies. Each of the antigens, L1PPTDTTTFKRI11P, T7PFKRIFLKRMP17P, I11PFLKRMPSIRESLKER26P, M16PPSIRESLKER26P, and G27PVDMARLGPEWSQPM41P, was designed from the tertiary structure of predicted prorenin. These antibodies were labeled anti-01/06, anti-07/10, anti-11/26, anti-16/26, and anti-27/41, respectively, for their binding specificities. Inactive recombinant human prorenin (0.1 nM) bound to various concentrations of anti-01/06, anti-11/26, and anti-27/41 antibodies at 4 degrees C with equilibrium dissociation constants of 138, 41, and 22 nM, respectively. However, intact prorenin (0.1 nM) did not show significant binding to 200 nM anti-07/10 and anti-16/26 antibodies for 20 h. Ninety percent of prorenin (0.1 nM) was found to be non-proteolytically activated by incubation with anti-11/26 antibodies (200 nM) at 4 degrees C for 20 h. Prorenin was not active even under complex with either anti-01/06 or anti-27/41 antibodies. Prorenin was also reversibly activated at pH 3.3 and 4 degrees C for 25 h. The acid-activated prorenin bound to anti-07/10 and anti-16/26 antibodies as well as to anti-01/06, anti-11/15, and anti-27/41 antibodies at neutral pH and 4 degrees C in 2 h. Their dissociation constants were 13, 40, 8.6, 3.6, and 14 nM, respectively. The acid-activated prorenin was re-inactivated by incubation at pH 7.4 and 4 degrees C in 50 h. Anti-07/10 and anti-11/26 antibodies inhibited such re-inactivation at 25 degrees C by more than 90% and 50%, respectively, whereas other kinds of antibodies did not prevent the re-inactivation at 25 degrees C. These results indicate that prorenin has "gate" (T7PFKR10P) and "handle" (I11PFLKR15P) regions critical for its non-proteolytic activation.  相似文献   

12.
Endoglucanase 2 (EG2) of the cellulolytic ruminal anaerobe Bacteroides succinogenes is a 118-kilodalton (kDa) enzyme which binds to cellulose and produces cellotetraose as the end product of hydrolysis. The purified enzyme was treated with the protease trypsin in an attempt to isolate peptides which retained the ability to either hydrolyze soluble carboxymethyl cellulose or bind to insoluble cellulose. There was no loss in endoglucanase activity (carboxymethylcellulase) over a period of 2 h following the addition of trypsin. In comparison, there was a greater than eightfold reduction in the binding of carboxymethylcellulase activity to crystalline cellulose. A Lineweaver-Burk plot with amorphous cellulose as the substrate revealed that the trypsin-digested enzyme had an identical Vmax but a 1.9-fold-lower Km in comparison with the intact enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the trypsin-digested enzyme revealed two major peptides of 43 and 51 kDa (p43 and p51). The 43-kDa peptide was able to bind to both amorphous and crystalline cellulose, whereas p51 did not. Purified p51 had a molar activity toward carboxymethyl cellulose which was identical to that of the intact enzyme, but activity toward both amorphous and crystalline cellulose was reduced approximately twofold. Two high-titer monoclonal antibodies from mice immunized with the intact protein recognized p43 but not p51. The results are consistent with a bifunctional organization of EG2, in which the 118-kDa enzyme is composed of a 51-kDa catalytic domain and a highly antigenic 43-kDa substrate-binding domain. In terms of its domain structure and activity toward cellulose, EG2 is very similar to cellobiohydrolase II of Trichoderma reesei.  相似文献   

13.
Thermotoga maritima XynA is an extremely thermostable modular enzyme with five domains (A1-A2-B-C1-C2). Its catalytic domain (-B-) is flanked by duplicated non-catalytic domains. The C-terminal repeated domains represent cellulose-binding domains (CBDs). Xylanase domains related to the N-terminal domains of XynA (A1-A2) are called thermostabilizing domains because their deletion normally leads to increased thermosensitivity of the enzymes. It was found that a glutathione-S-transferase (GST) hybrid protein (GST-A1A2) containing both A-domains of XynA can interact with various soluble xylan preparations and with mixed-linkage beta-1,3/beta-1,4-glucans. GST-A1A2 showed no affinity for insoluble microcrystalline cellulose, whereas, vice versa, GST-C2, which contains the C-terminal CBD of XynA, did not interact with soluble xylan. Another hybrid protein, GST-A2, displayed the same binding properties as GST-A1A2, indicating that A2 alone can also promote xylan binding. The dissociation constants for the binding of xylose, xylobiose, xylotriose, xylotetraose and xylopentaose by GST-A2, as determined at 20 degrees C by fluorescence quench experiments, were 8.1 x 10(-3) M, 2.3 x 10(-4) M, 2.3 x 10(-5) M, 2.5 x 10(-6)M and 1.1 x 10(-6) M respectively. The A-domains of XynA, which are designated as xylan binding domains (XBD), are, from the structural as well as the functional point of view, prototypes of a novel class of binding domains. More than 50 related protein segments with hitherto unknown function were detected in about 30 other multidomain beta-glycanases, among them putative plant (Arabidopsis thaliana) xylanases. It is argued that polysaccharide binding and not thermostabilization is the main function of A-like domains.  相似文献   

14.
Factors affecting the mutual interaction between the catalytic core [octamer of large subunit (A)] and the small subunit (B) comprising ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from the superhalophilic cyanobacterium, Aphanothece halophytica, were investigated. The enzyme molecule dissociated into the catalytic core highly depleted of subunit B and the monomeric form of subunit B during density gradient centrifugation (15 h, 4 degrees C) in a sucrose solution of low ionic strength ([I] less than or equal to 50 mM), whereas dissociation was effectively prevented in the presence of 0.3 M KCl. Under the latter condition, dissociation of the enzyme molecule was almost completely prevented by raising the temperature to 20 degrees C, suggesting hydrophobic interaction between catalytic core and subunit B. The addition of RuBP to the sucrose gradient was shown to effectively reduce the molecular dissociation, suggesting a close interaction between the catalytic site and the binding site of subunit B with the catalytic core directly or indirectly. The dissociation was accelerated at alkaline pH higher than 8.5. Reconstitution of the enzymatically active molecular form from the separated components, catalytic core highly depleted of subunit B and B1, was done under various conditions. Both carboxylase and oxygenase activities increased proportionately with the amount of subunit B and then became saturated. From the reconstitution kinetics of RuBP carboxylase, the binding constant of subunit B (KD) was estimated to be about 30 nM in the presence of bovine serum albumin under the usual assay conditions at pH 7.5 and 25 degrees C, but decreased to about 1 nM by the further addition of 0.3 M KCl. Alkaline pH (8.5 or 9) could increase KD by one order of magnitude. High KD was also observed as a result of lowering the temperature; however, the presence of 0.3 M KCl or 0.4 M sucrose or glycerol could effectively decrease the KD at low temperature from 900 nM to less than 50 nM. All these data indicate that the enzyme dissociation at low temperature can be prevented in vivo by cellular components such as salts, polyols, and substrate RuBP besides a factor of enzyme concentration.  相似文献   

15.
16.
A recombinant fragment of the human receptor for epidermal growth factor containing both its extracellular domain and its membrane-spanning segment, when dissolved with Triton X-100, was observed to dimerize in response to addition of epidermal growth factor (EGF) even at the lowest concentration of this fragment that could be assayed (4 nM). Consequently, the dissociation constant for the dimer of this fragment is at least 10,000-fold smaller than that for dimers of soluble, recombinant forms of the extracellular domain lacking the membrane-spanning segment. The second-order rate constant for dimerization of the fragment containing the extracellular domain and the membrane-spanning segment was estimated to be greater than 0.3 nM(-1) min(-1), more than 10-fold that of the native enzyme under the same conditions. This result suggests that the cytoplasmic domain of the intact enzyme sterically hinders its dimerization. When EGF is removed from the dimer of the fragment, the rate constant for its dissociation is greater than 0.2 min(-1), more than 40-fold that of the native enzyme. This result suggests that interfaces between cytoplasmic domains of intact EGF receptor impart significant stabilization to the dimer of the enzyme.  相似文献   

17.
A novel function for the cellulose binding module of cellobiohydrolase I   总被引:1,自引:0,他引:1  
A homogeneous cellulose-binding module(CBM)of cellobiohydrolase I(CBHI)from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration.Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40℃for 24 h.The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface.The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils,but also is involved in the structural disruption at the fibre surface.The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs.  相似文献   

18.
A comprehensive experimental study of substrate inhibition in cellulose hydrolysis based on a well defined system is presented. The hydrolysis of bacterial cellulose by synergistically operating binary mixtures of cellobiohydrolase I from Trichoderma reesei and five different endoglucanases as well as their catalytic domains displays a characteristic substrate inhibition. This inhibition phenomenon is shown to require the two-domain structure of an intact cellobiohydrolase. The experimental data were in accordance with a mechanism where cellobiohydrolases previously bound to the cellulose by means of their cellulose binding domains are able to find chain ends by lateral diffusion. An increased substrate concentration at a fixed enzyme load will also increase the average diffusion distance/time needed for cellobiohydrolases to reach new chain ends created by endoglucanases, resulting in an apparent substrate inhibition of the synergistic action. The connection between the binding properties and the substrate inhibition is encouraging with respect to molecular engineering of the binding domain for optimal performance in biotechnological processes.  相似文献   

19.
We have developed an expression, refolding, and purification protocol for the catalytic domain of human Phosphodiesterase 3B (PDE3B). High level expression in Escherichia coli has been achieved with yields of up to 20mg/L. The catalytic domain of the enzyme was purified by affinity chromatography utilizing a novel affinity ligand. PDE3B, purified by affinity chromatography, with no single impurity #10878;1% as determined by SDS-PAGE, has a specific activity of 2210+/-442nmol/min/mg and a KM for cAMP of 44+/-4.5nM. Reducing the size of the expressed catalytic domain from residues 387-1112 to residues 654-1086 greatly reduced the aggregation phenomena observed with the affinity purified PDE3B. The definition of the N-terminus of the catalytic core was examined through the generation of several truncation mutants spanning amino acid residues 636-674. Constructs starting at E665 and M674 were fully active and devoid of activity, respectively. A construct starting at D668 had a Vmax reduced by approximately 10-fold relative to the longer constructs, yet the KM was not affected. This indicates the minimal N-terminus of the catalytic core lies between E665 and Y667. Refolding and affinity purification of the 654-1073 catalytic core of PDE3B has been employed to produce large quantities of highly pure enzyme for structural studies.  相似文献   

20.
The cGMP analogue 8-(2-carboxymethylthio)-cGMP (CMT-cGMP) was synthesized and its binding to cGMP-dependent protein kinase (cGMP kinase) was studied. CMT-cGMP bound at 4 degrees C with an over 1400-fold higher affinity to site 1 than to site 2 of the native enzyme with apparent Kd values of 4.1 nM and 5.9 microM, respectively. The apparent selectivity for site 1 was about threefold less with the autophosphorylated enzyme and about sixfold with the catalytically active fragment of cGMP kinase. The apparent selectivity was confirmed by determination of the dissociation of [3H]cGMP from cGMP kinase in the presence of 1 microM CMT-cGMP at 4 degrees C. The apparent site 1 selectivity was 250-fold at 30 degrees C under the conditions of the phosphotransferase assay. The apparent Kd values were 47 nM and 11.7 microM for site 1 and 2, respectively. CMT-cGMP stimulated the phosphotransferase activity of native and autophosphorylated cGMP kinase with Ka values of about 80 nM. About 60% of the total catalytic rate of cGMP kinase was obtained in the presence of 1 microM CMT-cGMP and 0.13 mM Kemptide. The apparent Km values for ATP and Kemptide were not affected. However, CMT-cGMP activated the enzyme to the same level as cGMP when 1.3 mM Kemptide was present. CMT-cGMP and cGMP inhibited cAMP-stimulated autophosphorylation of cGMP kinase with IC50 values of 0.7 microM and 2 microM, respectively. Neither compound stimulated autophosphorylation of cGMP kinase by itself. These results indicate that CMT-cGMP binds with high preference to site 1 of cGMP kinase and that occupation of site 1 may lead to expression of a partial enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号