共查询到20条相似文献,搜索用时 15 毫秒
1.
Gianni S Travaglini-Allocatelli C Cutruzzolà F Brunori M Shastry MC Roder H 《Journal of molecular biology》2003,330(5):1145-1152
The folding of cytochrome c(551) from Pseudomonas aeruginosa was previously thought to follow a simple sequential mechanism, consistent with the lack of histidine residues, other than the native His16 heme ligand, that can give rise to mis-coordinated species. However, further kinetic analysis reveals complexities indicative of a folding mechanism involving parallel pathways. Double-jump interrupted refolding experiments at low pH indicate that approximately 50% of the unfolded cytochrome c(551) population can reach the native state via a fast (10 ms) folding track, while the rest follows a slower folding path with populated intermediates. Stopped-flow experiments using absorbance at 695 nm to monitor refolding confirm the presence of a rapidly folding species containing the native methionine-iron bond while measurements on carboxymethylated cytochrome c(551) (which lacks the Met-Fe coordination bond) indicate that methionine ligation occurs late during folding along the fast folding track, which appears to be dominant at physiological pH. Continuous-flow measurements of tryptophan-heme energy transfer, using a capillary mixer with a dead time of about 60 micros, show evidence for a rapid chain collapse within 100 micros preceding the rate-limiting folding phase on the milliseconds time scale. A third process with a time constant in the 10-50 ms time range is consistent with a minor population of molecules folding along a parallel channel, as confirmed by quantitative kinetic modeling. These findings indicate the presence of two or more slowly inter-converting ensembles of denatured states that give rise to pH-dependent partitioning among fast and slow-folding pathways. 相似文献
2.
C Travaglini-Allocatelli F Cutruzzolà M G Bigotti R A Staniforth M Brunori 《Journal of molecular biology》1999,289(5):1459-1467
We report on the folding kinetics of the small 82 residue cytochrome c551from Pseudomonas aeruginosa. The presence of two Trp residues (Trp56 and Trp77) allows the monitoring of fluorescence quenching on refolding in two different regions of the protein. A single His residue (the iron-coordinating His16) permits the study of refolding in the absence of miscoordination events. After identification of the kinetic traps (Pro isomerization and aggregation of denatured protein), overall refolding kinetics is described by two processes: (i) a burstphase collapse (faster than milliseconds) which we show to be a global event leading to a state whose compactness depends on the overall net charge; at the isoeletric pH (4.7), it is maximally compact, while above and below it is more expanded; and (ii) an exponential phase (in the millisecond time range) leading to the native protein via a transition state(s) possibly involving the formation of a specific salt bridge between Lys10 and Glu70, at the contact between the N and C-terminal helices. Comparison with the widely studied horse cytochrome c allows the discussion of similarities and differences in the folding of two proteins which have the same "fold" despite a very low degree of sequence homology (<30 %). 相似文献
3.
Sequence-specific 1H NMR resonance assignments for all but the C-terminal Lys 82 are reported for iron(II) cytochrome c551 from Pseudomonas aeruginosa at 25 degrees C and pH = 6.8. Spin systems were identified by using TOCSY and DQF-COSY spectra in 2H2O and 1H2O. Sequential assignments were made by using NOESY connectivities between adjacent amide, alpha, and beta protons. Resonances from several amino acids including His 16, Gly 24, Ile 48, and Met 61 experience strong ring-current shifts due to their placement near the heme. All heme protons, including the previously unassigned propionates, have been identified. Preliminary analysis of sequential and medium-range NOEs provides evidence for substantial amounts of helix in the solution structure. Long-range NOEs indicate that the folds in solution and crystal structures are similar. For one aromatic side chain (Tyr 27) that is close to the heme group we found a transition from hindered ring rotation at low temperature to rapid rotation at high temperature. 相似文献
4.
Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa 总被引:2,自引:0,他引:2
The electron transfer equilibrium and kinetics between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa have been studied. The equilibrium constant K = ([Cyt(III)] . [Az(I)])/([Cyt(II)] . [Az(II))]) = 0.5 at 25 degrees C is about seven times smaller than that observed between the cytochrome c551 and the titrations confirmed a 43-mV difference between the mid-point potentials of +266 mV and +309 mV for the Alcaligenes and Pseudomonas azurins respectively. The kinetics of the reaction between Alcaligenes azurin and Pseudomonas cytochrome c551 were investigated by the temperature-jump chemical relaxation method. Only a single relaxation mode was observed throughout the range of concentrations and temperatures examined. Thus, the slow relaxation time observed in the reaction between P. aeruginosa azurin and cytochrome c551 is not observed with the Alcaligenes azurin. The simplest mechanism that can therefore be ascribed to the investigated system is: [formula: see text]. This scheme is similar to that proposed earlier for the reaction between P. aeruginosa azurin and cytochrome c551 but does not involve the conformational transition proposed for azurin. The specific rates for the electron transfer are still fast: 1.8 x 10(6) M-1 . s-1 and 3.0 x 10(6) M-1 . s-1 respectively at 25 degrees C. 相似文献
5.
Temperature-jump studies on the electron-transfer reaction between azurin and cytochrome c-551 clearly reveal two chemical relaxations. The amplitudes of these relaxation processes have identical spectral distributions, but the relaxation times show different dependences on the reactant concentrations. These findings are discussed in terms of possible models. 相似文献
6.
Nuclear magnetic resonance (NMR) spectroscopy was used to study Pseudomonas aeruginosa cytochrome c-551. Assignments of resonances to specific residues have been made. A low-resolution X-ray structure was used to aid assignments. A structural comparison was made between P. aeruginosa cytochrome c-551 and mammalian cytochrome c, based on comparisons of NMR data. 相似文献
7.
The solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa based on 2D 1H NMR data is reported. Two sets of structure calculations were completed with a combination of simulated annealing and distance geometry calculations: one set of 20 structures included the heme-peptide covalent linkages, and one set of 10 structures excluded them. The main-chain atoms were well constrained within the two structural ensembles (1.30 and 1.35 A average RMSD, respectively) except for two regions spanning residues 30-40 and 60-70. The results were essentially the same when global fold comparisons were made between the ensembles with an average RMSD of 1.33 A. In total, 556 constraints were used, including 479 NOEs, 53 volume constraints, and 24 other distances. This report represents the first solution structure determination of a heme protein by 2D 1H NMR and should provide a basis for the application of these techniques to other proteins containing large prosthetic groups or cofactors. 相似文献
8.
Hasegawa J Shimahara H Mizutani M Uchiyama S Arai H Ishii M Kobayashi Y Ferguson SJ Sambongi Y Igarashi Y 《The Journal of biological chemistry》1999,274(53):37533-37537
A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c(551) (PA c(551)) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c(551) with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), which has similar main chain folding to PA c(551), but is more stable to heat. Thermodynamic properties of PA c(551) with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c(551) with HT c(552). In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c(552). We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c(551) can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c(552). The higher stability of HT c(552) may in part be attributed to some of these substitutions. 相似文献
9.
Redox-linked spin-state changes in the di-haem cytochrome c-551 peroxidase from Pseudomonas aeruginosa.
下载免费PDF全文

Magnetic-c.d., e.p.r. and optical-absorption spectra are reported for the half-reduced form of Pseudomonas aeruginosa cytochrome c-551 peroxidase, a di-haem protein, and its fluoride derivative. Comparison of this enzyme species with oxidized peroxidase shows the occurrence of spin-state changes at both haem sites. The high-potential haem changes its state from partially high-spin to low-spin upon reduction. This is linked to a structural alteration at the ferric low-potential haem group, causing it to change from low-spin to high-spin. Low-temperature spectra demonstrate photolysis of an endogenous ligand of the high-potential haem. In addition, an inactive form of enzyme is examined in which the structural change at the ferric low-potential haem does not occur on reduction of the high-potential haem. 相似文献
10.
A temperature-jump study of the reaction between azurin and cytochrome c oxidase from Pseudomonas aeruginosa.
下载免费PDF全文

The electron-transfer reaction between azurin and the cytochrome oxidase from Pseudomonas aeruginosa was investigated by temperature-jump relaxation in the absence of O2 and in the presence of CO. The results show that: (i) reduced azurin exists in two forms in equilibrium, only one of which is capable of exchanging electrons with the Pseudomonas cytochrome oxidase, in agreement with M. T. Wilson, C. Greenwood, M. Brunori & E. Antonini (1975) (Biochem. J. 145, 449-457); (ii) the electron transfer between azurin and Pseudomonas cytochrome oxidase occurs within a molecular complex of the two proteins; this internal transfer becomes rate-limiting at high reagent concentrations. 相似文献
11.
Brunori M Bigotti MG Cutruzzolà F Gianni S Travaglini-Allocatelli C 《Biophysical chemistry》2003,100(1-3):409-419
Considerable progress was made over the last few years in understanding the mechanism of folding of cytochrome c551, a small acidic hemeprotein from Pseudomonas aeruginosa. Comparison of our results with those obtained by others on horse heart cytochrome c allows to draw some general conclusions on the structural features that are common determinants in the folding of members of the cytochrome c family. 相似文献
12.
The nitrite oxidizes reduced azurin and cytochrome c-551 from Pseudomonas aeruginosa. The effects of pH, ionic strength and concentrations of nitrite, EDTA and the protein on the oxidation were investigated. The results obtained indicate that nitrite interacts not only with the terminal electron carrier of the nitrite reducing chain (nitrite reductase, cytochrome cd1) but also with the intermediate electron carrier components of the chain (azurin and cytochrome c-551). 相似文献
13.
Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa 总被引:6,自引:0,他引:6
The cytochrome c-551 gene from Pseudomonas aeruginosa was cloned by using two oligonucleotide probes, which had been synthesized based on the known primary structure of the protein. The restriction map of the cloned DNA and sequence analysis showed that the cytochrome c-551 gene is located 50 bp downstream of the nitrite reductase gene, which has recently been cloned and sequenced. DNA sequence analysis also indicated that cytochrome c-551 is synthesized in vivo as a precursor having an amino-terminal signal sequence consisting of 22 amino acid residues. 相似文献
14.
Anaerobically induced expression of the nitrite reductase cytochrome c-551 operon from Pseudomonas aeruginosa. 总被引:4,自引:0,他引:4
The nitrite reductase gene (denA) and the cytochrome c-551 gene (denB) are located only 50 bp apart from each other in the Pseudomonas aeruginosa chromosome. We report evidence that these two genes are co-transcribed as an operon only under anaerobic (denitrifying) conditions. The nucleotide sequence of the promoter (regulatory) region of the operon is highly AT-rich and contains a sequence closely resembling the consensus FNR binding site in E. coli. 相似文献
15.
C Greenwood D Barber S R Parr E Antonini M Brunori A Colosimo 《The Biochemical journal》1978,173(1):11-17
The reaction of ascorbate-reduced Pseudomonas cytochrome oxidase with oxygen was studied by using stopped-flow techniques at pH 7.0 and 25 degrees C. The observed time courses were complex, the reaction consisting of three phases. Of these, only the fastest process, with a second-order rate constant of 3.3 X 10(4) M-1.S-1, was dependent on oxygen concentration. The two slower processes were first-order reactions with rates of 1.0 +/- 0.4s-1 and 0.1 +/- 0.03s-1. A kinetic titration experiment revealed that the enzyme had a relatively low affinity constant for oxygen, approx. 10(4)M-1. Kinetic difference spectra were determined for all three reaction phases, showing each to have different characteristics. The fast-phase difference spectrum showed that changes occurred at both the haem c and haem d1 components of the enzyme during this process. These changes were consistent with the haem c becoming oxidized, but with the haem d1 assuming a form that did not correspond to the normal oxidized state, a situation that was not restored even after the second kinetic phase, which reflected further changes in the haem d1 component. The results are discussed in terms of a kinetic scheme. 相似文献
16.
Cutruzzolà F Arese M Ranghino G van Pouderoyen G Canters G Brunori M 《Journal of inorganic biochemistry》2002,88(3-4):353-361
Cytochrome c(551) from Pseudomonas aeruginosa is a monomeric redox protein of 82 amino-acid residues, involved in dissimilative denitrification as the physiological electron donor of cd(1) nitrite reductase. The distribution of charged residues on the surface of c(551) is very anisotropic: one side is richer in acidic residues whereas the other shows a ring of positive side chains, mainly lysines, located at the border of an hydrophobic patch which surrounds the heme crevice. In order to map in cytochrome c(551) the surface involved in electron transfer, we have introduced specific mutations in three residues belonging to the hydrophobic patch, namely Val23-->Asp, Pro58-->Ala and Ile59-->Glu. The effect of these mutations was analyzed studying both the self-exchange rate and the electron-transfer activity towards P. aeruginosa cd(1) nitrite reductase, the physiological partner and P. aeruginosa azurin, a copper protein often used as a model redox partner in vitro. Our results show that introduction of a negative charge in the hydrophobic patch severely hampers both homonuclear and heteronuclear electron transfer. 相似文献
17.
The gene coding for Pseudomonas aeruginosa cytochrome c551 has been cloned and its nucleotide sequence determined. Cytochrome c551 is expressed as a 104 amino acid pre-protein from which a signal peptide of 22 amino acids is cleaved off during the translocation across the cytoplasmic membrane. The gene is located just downstream of the gene coding for nitrite reductase on the Pseudomonas aeruginosa chromosome, suggesting that these genes form an operon. 相似文献
18.
Shinya Kobayashi Sotaro Fujii Aya Koga Satoshi Wakai Nobuyuki Matubayasi 《Bioscience, biotechnology, and biochemistry》2017,81(7):1274-1278
Reversible denaturation of Pseudomonas aeruginosa cytochrome c551 (PAc551) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc551, for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters. 相似文献
19.
The reaction between reduced Pseudomonas cytochrome c551 and cytochrome oxidase with two inorganic metal complexes, Co(phen)3(3+) and Mn(CyDTA)(H2O)-, has been followed by stopped-flow spectrophotometry. The electron transfer to cytochrome c551 by both reactants is a simple process, characterized by the following second-order rate constant: k = 4.8 X 10(4) M-1 sec-1 in the case of Co(phen)3(3+) and k = 2.3 X 10(4) M-1 sec-1 in the case of Mn(CyDTA)(H2O)-. The reaction of the c-heme of the oxidase with both metal complexes is somewhat heterogeneous, the overall process being characterized by the following second-order rate constants: k = 1.7 X 10(3) M-1 sec-1 with Co(phen)3(3+) and k = 4.3 X 10(4) M-1 sec-1 with Mn(CyDTA)(H2O)- as oxidants; under CO (which binds to the d1-heme) the former constant increases by a factor of 2, while the latter does not change significantly. The oxidation of the d1-heme of the oxidase by Co(phen)3(3+) occurs via intramolecular electron transfer to the c-heme, a direct bimolecular transfer from the complex being operative only at high metal complex concentrations; when Mn(CyDTA)(H2O)- is the oxidant, the bimolecular oxidation of the d1-heme competes successfully with the intramolecular electron transfer. 相似文献
20.
The folding-unfolding transition of Fe(III) cytochrome c has been studied with the new technique of multifrequency calorimetry. Multifrequency calorimetry is aimed at measuring directly the dynamics of the energetic events that take place during a thermally induced transition by measuring the frequency dispersion of the heat capacity. This is done by modulating the folding/unfolding equilibrium using a variable frequency, small oscillatory temperature perturbation (approximately 0.05-0.1 degrees C) centered at the equilibrium temperature of the system. Fe(III) cytochrome c at pH 4 undergoes a fully reversible folding/unfolding transition centered at 67.7 degrees C and characterized by an enthalpy change of 81 kcal/mol and heat capacity difference between unfolded and folded states of 0.9 kcal/K*mol. By measuring the temperature dependence of the frequency dispersion of the heat capacity in the frequency range of 0.1-1 Hz it has been possible to examine the time regime of the enthalpic events associated with the transition. The multifrequency calorimetry results indicate that approximately 85% of the excess heat capacity associated with the folding/unfolding transition relaxes with a single relaxation time of 326 +/- 68 ms at the midpoint of the transition region. This is the first time that the time regime in which heat is absorbed and released during protein folding/unfolding has been measured. 相似文献