首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Four electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been studied to investigate the origin of the multiple forms of human TPI, in particular the constitutive TPI-B isozyme and the cell division-associated TPI-A isozyme. The variant phenotype expressed by the constitutive TPI-B isozyme in both erythrocytes and peripheral lymphocytes was also expressed by the cell division-associated isozymes in mitogen-stimulated lymphocytes and hair root cells. These results strongly support the hypothesis of Decker and Mohrenweiser (1981) that TPI-B and TPI-A originated from the same structural gene. We also found that the isozyme e is different from TPI-A with respect to both its electrophoretic mobility and heat stability. This finding is in contrast to the recent conclusion of Yuan et al. (1981) that both the isozyme e and TPI-A are deamidation products of TPI-B.  相似文献   

2.
Two new electrophoretic variants of human triosephosphate isomerase (TPI) have been partially purified and characterized. The TPI Manchester variant, a cathodally migrating electrophoretic allozyme identified in an individual with the phenotype TPI 1-Manchester, is associated with a normal level of enzyme activity in erythrocytes and normal kinetic properties. It is very thermolabile at 55 and 57° C, although it is not uniquely sensitive to either guanidine-HCl or urea denaturation. The TPI Hiroshima-2 variant is an anodally migrating allozyme (the phenotype of proband is TPI 1-Hiroshima-2) with normal activity and kinetic properties and also normal stability characteristics. It is inactivated less by antisera raised against normal human TPI than either the normal or the Manchester allozyme. Dissociation-reassociation experiments utilizing these allozymes have confirmed that normal human red blood cell TPI isozymes are produced by a sequence of reactions (presumably deamidations) involving alternating subunits.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy.  相似文献   

3.
Several trees with expected heterozygous phenotype for triose-phosphate isomerase (TPI) were discovered in a population of dwarf mountain pine (Pinus mugo Turra) from southern Poland. As the inheritance of this enzyme in pines has not been reported, segregation of allelic variants was tested in eight trees with putative heterozygous phenotypes for two loci, TpiA and TPIB: Linkage between these and some other isozyme loci were studied and evidence for linkage has been found between TpiA and PgdA (r = 0.10) and between TpiB and DiaD (r = 0.36), but in single trees only. The subcellular localization of TPI isozymes was determined by comparing isoenzymes from the total extract with those found in fraction enriched in plastids, prepared by differential gradient centrifugation of cellular organelles. The more slowly migrating TPI-B isozyme is located in plastids.  相似文献   

4.
Pichersky E  Gottlieb LD 《Genetics》1983,105(2):421-436
Formal genetic analyses of the mode of inheritance of the multiple plastid and cytosolic isozymes of triose phosphate isomerase (TPI, EC 5.3.1.1) in annual diploid species of Clarkia (Onagraceae), native to California, suggest that each set of isozymes is specified by duplicate structural genes. In contrast, most diploid plant species possess one plastid and one cytosolic TPI isozyme each coded by a single locus. Linkage tests revealed that the two genes coding the plastid TPIs assort independently. Although the number of individuals sampled per species was small, the plastid isozymes were electrophoretically more variable than the cytosolic isozymes. The two gene duplications are the first reported that characterize an entire plant genus. Initial electrophoretic surveys of TPI in other genera of Onagraceae revealed that the duplication of the gene coding the plastid isozyme is apparently restricted to Clarkia, whereas that of the gene coding the cytosolic isozyme is present in most genera of the family. The separate phylogenetic distributions of the two duplications suggest that the processes that gave rise to them were unrelated.  相似文献   

5.
Three new electrophoretic variants of human erythrocyte triosephosphate isomerase (TPI) have been partially purified and compared with the normal isozyme with respect to stability, kinetics, and immunological properties. TPI 2HR1, an anodally migrating variant, was less stable than normal in guanidine denaturation and thermodenaturation tests, although it exhibited normal kinetic properties. The level of enzyme activity in erythrocytes from the proband with the phenotype TPI 1-2HR1 was about 60% of the normal mean. The variant allozyme TPI 2NG1, an anodally migrating allozyme associated with normal activity, was very thermolabile at 55 and 57°C. It was also much more labile than normal in stability tests in buffers at pH 5 and pH 10, although it exhibited normal kinetic and immunological properties. TPI 4NG1, a cathodally migrating variant associated with normal activity and normal kinetic as well as immunological properties, was more stable than normal in pH 5 buffer. Family studies demonstrated that the unique characteristics of these variants are genetically transmitted. In two-dimensional electrophoresis of purified isozymes the variant subunits were separated from the normal in the pI axis. However, there is no difference between the variants and the normal in the molecular weight axis, suggesting that the variants result from single amino acid substitutions.  相似文献   

6.
An electrophoretically unique, thermolabile isozyme of triosephosphate isomerase (TPI; EC 5.3.1.1) accounts for 10–30% of the enzymatic activity in a range of mitotically active human cells and tissues. This type 2 form (subunit) of human TPI appears in two isozymes, an anodally migrating, relative to the constitutive TPI-1/1 homodimer, TPI-2/2 homodimer and the TPI-1/2 heterodimer with an intermediate mobility. Human cell types expressing the induced isozyme, which is the product of the same structural locus as the constitutive isozyme, include mitogen-stimulated lymphocytes, virally transformed B-lymphoblastoid cells, leukemia-derived T-lymphoblastoid cells, HeLa cells, both normal and transformed fibroblasts, and placental tissue. Extracts of nondividing or terminally differentiated human cells/tissues, such as erythrocytes, striated muscle, peripheral lymphocytes, and platelets, contain high levels of the constitutive TPI-1/1 isozyme but little or undetectable levels of the TPI-1/2 or TPI-2/2 isozyme. The cell division-associated TPI-1/2 and -2/2 isozymes are distinct in electrophoretic mobility from the deamidated forms of the constitutive isozyme. Extracts of dividing gorilla fibroblasts display an isozyme pattern identical to that of proliferating human cells, but various proliferating cells derived from the African green monkey, rabbit, and chicken express only the constitutive isozyme. Thus, expression of the cell division-associated isozyme of TPI is restricted to the hominoids, suggesting a recently evolved modification mechanism which is specifically activated in proliferating cells.Financial support was derived from Contract EY-77-C-02-2828 from the Department of Energy and Training Grant 5-T32-GM07544 from the National Institutes of Health.  相似文献   

7.
Detailed interpretation of triose phosphate isomerase (TPI) isozymes in seed plants has been restricted to only a few species. Three sets of TPI bands are regularly observed in the cherimoya(Annona cherimola), a primitive angiosperm. The slowest, set I, is expressed as one or three bands; the second-slowest set II, as one or two bands; and the fastest, set IV, as one or three bands. A faint set III, just cathodal to set IV, is detected rarely with overstaining. Set IV bands are expressed in macerated extracted pollen but not in pollen leachate. Dissociation-reassociation experiments reveal that the set II bands are heterodimers involving, in part, the enzymes involved in the set I bands. These data combined with those from full-sib progeny analysis lead us to propose a three-locus model to explain the TPI isozyme banding patterns in cherimoya. Sets I and IV consist of the allelic products of individual, single loci. Sets I and II occur in the cytoplasm. Set IV occurs in organelles. Set II isozymes are the intergenic heterodimers of the locus coding for set I and the locus coding for set III. Our results reported here are contrasted with the TPI isozyme patterns known for other vascular plants and suggest that the locus coding for set III may be a duplication of very ancient origin.This work was supported, in part, by funding from the Elvenia J. Slosson Endowment Fund.  相似文献   

8.
Alkaline phosphatase (ALP) components in 8 cell lines of HeLa were examined. Line to line heterogeneity in ALP expression was observed using the criteria of electrophoretic mobility before and after neuraminidase treatment, heat stability, L-phenylanine inhibition, and reactivity against antiplacental ALP antiserum. Six lines contained a placentallike ALP isozyme and varying amounts of a liverlike ALP isozyme. One line contained a liverlike ALP isozyme only. One line contained a new ALP form which was clearly distinguished from the placental, liver, bone, and intestinal ALPs. Thus, derepression of the placental ALP structural locus appeared to have occurred in 6 of the 8 lines. However, where expressed, the placentallike ALP varied electrophoretically from line to line, and in only one case was the mobility identical to that of a common placental ALP phenotype. This phenotypic heterogeneity of the "derepressed' placentallike ALP contrasts markedly with the phenotypic stability of other enzymes expressed in HeLa cells.  相似文献   

9.
Summary Six (four Hindus, one Sikh, and one Muslim) out of 213 individuals originating from different parts of the Indian subcontinent (namely, Andhra Pradesh, Maharashtra, Uttar Pradesh, East Punjab, and West Punjab) were found to be Calcutta-1 (CAL1) variants of lactate dehydrogenase (LDH). The CAL1 variant was originally described (and thus, generally believed at present) as an allelic variant at the LDHA locus in chromosome 11. By using an improved Cellogel electrophoretic procedure the isozyme patterns observed in the erythrocytes and leukocytes of the variant have indicated that the CAL1 is not a variant of LDHA but that of LDHB, a chromosome 12 marker. This suggestion was supported by the isozyme patterns of LDH in a set of segregating clones of man-mouse somatic cell hybrids with the variant as human partner. Moreover, the variant cosegregated consistently with the human chromosome 12 and with the markers firmly assigned to the latter but not with human chromosome 11 or its markers in these hybrids. These results confirmed that the CAL1 is an LDHB variant.  相似文献   

10.
Summary Three primary isoforms of the dimeric glycolytic enzyme, triosephosphate isomerase (TPI; EC 5.3.1.1), are detected in proliferating human cells. The electrophoretically separable isoforms result from the three possible combinations of constitutive subunits and subunits expressed only in proliferating cells. Only a single primary isoform is observed in quiescent cells. The two subunits, which differ by covalent modification (s), are products of the single structural locus for this enzyme. Expression of the proliferation specific subunit (TPI-2) is detected within 6–10 hr following mitogen stimulation of quiescent human cells, requires RNA synthesis and is inhibited by agents which inhibit interleukin 2 expression or function. Only the constitutive subunit (TPI-1) is detected in proliferating cells from nonhominoid primate species. A single class of TPI mRNA, which is increased > 10 fold following stimulation of quiescent cells, is detected on northern blot analysis and S1 nuclease digestion analysis of RNA from quiescent and proliferating human cells. It is similar in size to the TPI mRNA from proliferating cells of the African green monkey, a primate species not expressing TPI-2. Comparison of the structure of the TPI gene from rhesus monkey (nonexpressing species) to the gene from expressing species does not suggest a mechanism for generating TPI-2. Thus, the regulation of the expression of the hominoid restricted, proliferation specific subunit of TPI has been further defined, although the mechanism for generating TPI-2 remains elusive.  相似文献   

11.
Merritt TJ  Quattro JM 《Genetics》2001,159(2):689-697
A striking correlation between neural expression and high net negative charge in some teleost isozymes led to the interesting, yet untested, suggestion that negative charge represents an adaptation (via natural selection) to the neural environment. We examine the evolution of the triosephosphate isomerase (TPI) gene family in fishes for periods of positive selection. Teleost fish express two TPI proteins, including a generally expressed, neutrally charged isozyme and a neurally expressed, negatively charged isozyme; more primitive fish express only a single, generally expressed TPI isozyme. The TPI gene phylogeny constructed from sequences isolated from two teleosts, a single acipenseriform, and other TPI sequences from the databases, supports a single gene duplication event early in the evolution of bony fishes. Comparisons between inferred ancestral TPI sequences indicate that the neural TPI isozyme evolved through a period of positive selection resulting in the biased accumulation of negatively charged amino acids. Further, the number of nucleotide changes required for the observed amino acid substitutions suggests that selection acted on the overall charge of the protein and not on specific key amino acids.  相似文献   

12.
A mutation resulting in increased triosephosphate isomerase (TPI) activity in blood was recovered in offspring of procarbazine hydrochloride-treated male mice. Breeding experiments indicated a codominant mode of expression. Compared to the wild type, heterozygous and homozygous mutants have mean erythrocyte TPI activities of approximately 140 and 190%, respectively. Besides blood and erythrocytes the increased activity is expressed to a similar degree in spleen, and to a lesser degree in liver, lung, kidney, muscle and brain. Enhanced activity was absent in the heart. Heterozygous and homozygous mutants are viable, fully fertile and exhibit no significant differences in haematological or other physiological traits studied. Biochemical investigations of TPI in both mutant genotypes revealed neither physicochemical nor kinetic differences compared to the wild type. Moreover, immunoinactivation studies showed no difference in the amount of antiplasma required to inactivate a constant amount of TPI activity in all three genotypes, strongly suggesting that the differences in enzyme activity are attributable to differing amounts of enzyme protein expressed per cell. Mapping studies indicated that the mutation is closely linked to the Gapd locus and consequently is located either adjacent to or within the Tpi-1 structural locus. It is hypothesized that the mutation affected a regulatory element contiguous to the Tpi-1 structural locus which acts by increasing the amount of TPI expressed.  相似文献   

13.
Summary Proliferating cells derived from hominoid species contain electrophoretically separable forms of triosephosphate isomerase (TPI), including a constitutive isozyme and major and minor cell proliferation specific isozymes. Genetic studies have shown that the constitutive and inducible isozymes are products of the same structural gene. A procedure has been developed for the rapid isolation of the constitutive and major proliferation specific TPI isozymes from human lymphoblastoid B cells. [35S]methionine labeled isozymes were purified through several steps of polyacrylamide gel electrophoresis in sufficient quantities for turnover studies and preliminary structural analysis. The intact isozymes were subjected to 23 steps of automated Edman degradation; both preparations yield a [35S] PTH-methionine only at cycle 14, as expected if the protein is TPI. Neither isozyme contains an blocked NH2-terminus and length heterogenity at the amino terminal does not exist. A comparison of the two purified isozymes on 2-D PAGE confirms that the constitutive isozyme consists of only type 1 subunits while the major proliferation specific isozyme is composed of a type 1 subunit and a unique type 2 subunit. The type 1 and type 2 subunits differ by at least four charge units under native, nondenaturing conditions of electrophoresis but do not differ in molecular mass. The difference between the type 1 and type 2 subunits is covalent, as the difference in isoelectric point between the two subunits is stable to both 2% SDS and 8 M urea. The expression of TPI-2 does not correlate with the existence of the labile asparagine residues. Turnover studies indicate that the level of each subunit is regulated by differences in rates of synthesis rather than degradation but a precursor-product relationship between the subunits was not observed. Thus the mechanism for synthesis of TPI-2 must operate either during mRNA processing or nascent peptide synthesis and then only in cells from hominoid species.  相似文献   

14.
15.
Genetic variants that affect the heat stability and ionic charge of the adult isozyme of glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) map to a gene, Gdc-1, located on chromosome 15. A second isozyme of glycerol-3-phosphate dehydrogenase, structurally homologous to the product of the Gdc-1 locus and expressed predominantly in undifferentiated tissues, has previously been identified. We have now discovered an electrophoretic variant of this embryonic isozyme. This expression is determined by a codominant allele of the gene, Gdc-2, that maps to the distal end of chromosome 9 as inferred from the observed gene order Mpi-1–d-Mod-1–Gdc-2.  相似文献   

16.
A ';null' activity variant phenotype for sorbitol dehydrogenase (SDH) was observed in C57BL/LiA mice and used to examine the genetics of this enzyme. Linkage studies of the locus ( Sdh-1 ) with non-agouti (a) and a biochemical Iocus encoding liver L-α-hydroxyacid oxidase ( Hao-1 ) demonstrated that it is coincident with or closely linked to the structural locus, previously localized on chromosome 2. Alcohol dehydrogenase (ADH) isozymes were also examined, since the liver A2 isozyme exhibited some activity as a sorbitol dehydrogenase on cellulose acetate zymograms. It is apparent that SDH activity is not ';essential' in this mouse strain.  相似文献   

17.
18.
Stability of the "two active X" phenotype in triploid somatic cells.   总被引:7,自引:0,他引:7  
B R Migeon  J A Sprenkle  T T Do 《Cell》1979,18(3):637-641
We examined triploid cells of XXY karyotype heterozygous for glucose 6 phosphate dehydrogenase (G6PD) electrophoretic variants with regard to the stability of their X chromosome phenotype. Clonal populations of cells derived from these human fibroblasts maintained a precise 1:2:1 ratio of A:heteropolymer:B isozymes throughout their life span, indicating stability of the two active X chromosomes in these cells. To determine the influence of the autosomal complement on X chromosome expression, we attempted to perturb the relationship. Fusion of these triploid cells with human diploid fibroblasts carrying a novel G6PD variant (B') resulted in heterokaryons exprssing a novel heteropolymer, presumably indicating that all three parental X chromosomes were active. However, no derepression of the inactive X chromosome was observed. Analysis of interspecific hybrids derived from triploid cells and mouse fibroblasts confirmed that activity of parental X chromosomes is maintained. Some human mouse hybrid clones, however, expressed only a single human G6PD isozyme, probably attributable to segregation of the pertinent X chromosome, but elimination of a relevant autosome cannot be excluded. The triploid cells transformed by SV40 showed alterations in LDH pattern and an approximately 10-20% decrease in chromosome number, but maintained the precise G6PD phenotype of the untransformed cell. These studies provide evidence for the stability of the X chromosome phenotype in triploid cells.  相似文献   

19.
Four major ALDH isozymes have been identified in human tissues using starch gel electrophoresis and isoelectric focusing. The isozyme bands have been termed as ALDH I, II, III and IV according to their decreasing electrophoretic migration and increasing isoelectric point. The isozymes have been partially purified via preparative isoelectric focusing. Kinetic characteristics of ALDH I and II were found to be quite similar to ALDH enzyme 2 and enzyme 1 described earlier by Greenfield and Pietruszko (Biochem Biophys Acta, 483 35–45 1977). ALDH III and IV showed a very high Km for propionaldehyde (1.0–1.5 mM at pH 9.5) and were not inhibited by disulfiram at pH 9.5. A variant phenotype of ALDH which lacked in isozyme I was detected in various tissues from Japanese individuals. Comparative kinetic properties of normal and variant enzyme are given.  相似文献   

20.
The electrophoretic patterns of esterase (E-1), alcohol dehydrogenase (ADH), and glutamate oxaloacetate transaminase (GOT) isozymes were studied in two Spanish populations of the lily Scilla autumnalis with B-chromosome carrying individuals. The E-1 isozyme activity appears only in those individuals with B-chromosomes. None of the bulbs free of B's show it. Five bulbs, mosaic for B-content, were identified. Electrophoretic analysis shows that these bulbs are characterised by mosaicism for E-1 isozyme activity. An analysis of individual roots by both electrophoretic and cytological methods shows that tissue mosaicism for B-content correlates with tissue mosaicism for E-1 isozyme activity. The electrophoretic analysis of different roots from bulbs heterozygous for the Est-1 locus indicates that the structural gene for E-1 is not located on the B-chromosome itself. Rather there is a derepressor effect of Bs on E-1 isozyme activity. Since ADH and GOT patterns are unaffected by the presence of B-chromosomes it is clear that they do not exhibit a generalised derepressor effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号