首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Disc polyacrylamide gel electrophoresis (disc PAGE) analyses of chick-mouse somatic cell hybrids [LM(TK)/CRB]isolated from fusion mixtures of chick erythrocytes and thymidine (TdR) kinase-deficient mouse [LM(TK)]cells have demonstrated that the somatic cell hybrids contain only chick cytosol TdR kinase F and mouse mitochondrial TdR kinase A activities. Karyotypes were analysed by the method which sequentially reveals Q- and C-bands. Four hybrid clones contained the full complement of mouse chromosomes and 1 to 3 chick micro-chromosomes. Counterselection of the LM(TK)/CRB hybrids in 5-bromodeoxyuridine (BUdR) medium resulted in the loss of chick cytosol TdR kinase F activity and at least one of the chick chromosomes, but mouse mitochondrial TdR kinase A activity was unaffected. Unlike the LM(TK)/CRB somatic cell hybrids, the BUdR-resistant clones could not grow in HATG (hypoxanthine-aminopte-rin-thymidine-glycine) medium. The results demonstrate that: (1) the chick cytosol TdR kinase F gene is on a member of the micro-chromosomes; and (2) selection in HATG- and BUdR-containing medium involves only cytosol TdR kinase F.  相似文献   

2.
Haploid frog cell strain ICR B20 is resistant to 10?4 M bromodeoxyuridine through its failure to express a thymidine-specific saturable transport reaction, although it continues to express thymidine kinase (EC 2.7.1.75) at levels comparable to that of the sensitive parental strain ICR 2A. However, the thymidine kinases of these two lines are not entirely equivalent: we report here that ICR 2A enzyme appears to contain two fractions of differing thermostability and that ICR B20 expresses only the more thermostable form. Plots of log surviving enzyme activity vs time at 45 °C from ICR 2A are biphasic and may be resolved into a thermolabile component F with a half-life about 5 min and a thermostable component S with a half-life greater than 200 min. Similar plots from ICR B20 are exponential and indicate a half-life greater than 200 min. The fraction of the initial enzyme activity represented by F averages about one-third of the total. If ICR 2A enzyme is heated in the presence of thymidine (0.05 mM), component F is stabilized. However, dialysis against thymidine-free buffer does not make S activity thermolabile. The time course of enzyme reaction in ICR 2A preparations is non-linear and suggests that F activity may decay independently of S; ICR B20 extracts (and extracts of ICR 2A that have previously been heated at 45 °C) give nearly linear reaction rates. These observations suggest that the transport deficiency of ICR B20 is associated with loss of a portion of the total thymidine kinase activity and raise the possibility that the lost fraction of activity may participate in transport.  相似文献   

3.
THE frog embryo cell line ICR 2A is the first established haploid vertebrate cell line1. In haploid cells recessive mutations should be detectable at a frequency 106 to 109 times greater than expected in diploid cells; mutagen treatment should increase the yield further. These predictions are useful to test whether variants arising in culture are the result of gene mutation. To apply this test to frog cells, mutations for thymidine kinase were sought. Such mutants were first obtained by exposing mouse L cells to the thymidine analogue 5-bromodeoxyuridine (BUdR); a loss of thymidine kinase activity prevented the lethal incorporation of BUdR into DNA2. The new phenotype was considered to be the result of gene mutation because of its heritability and eventually because of data from Luria-Delbrück fluctuation analyses3 (a test of the spontaneity or non-inducibility of a process, not its cause). The question of origin was further complicated by a number of factors: (1) the necessity of a long, repeated, exposure to BUdR2; (2) the high mutation rate (up to 10?3) compared with bacterial mutants (10?910?6)4,5; and (3) the presence of resistant clones with intermediate enzyme levels4,5.  相似文献   

4.
Thymidine kinase (TK) and deoxycytidine kinase (dCK) activity levels, [3H]thymidine (TdR) and 5-bromo-2′-deoxyuridine (BUdR) incorporation and 5-fluoro-2′-deoxyuridine (FUdR) sensitivity have been compared in TK-deficient (TU63 and TU84) and normal (TU291 and M3b) strains of the myxomycete, Physarum polycephalum. The mutants had about 2% of the TK and 100% of the dCK activity of wild-type (wt) strains. They incorporated some TdR into both nuclear (nDNA) and mitochondrial DNA (mtDNA) but incorporated too little BUdR to give a buoyant density shift in nuclear DNA. They grew in the presence of levels of FUdR which completely blocked DNA synthesis in TU291. The FUdR sensitivity of strain M3b could be increased by supplementing growth medium with folic acid.  相似文献   

5.
Three mouse tumour cell lines grew continuously in 3 micro M 5-bromodeoxyuridine (BUdR). One line (MC-2) produced a retrovirus and altered in morphology in the presence of BUdR or 5-iododeoxyuridine (IUdR). These effects, which could be reversed by growth in normal medium were similar to those reported for the B-16 mouse melanoma line. The B-16 line used in this study, however, as well as a variety of human cells (six melanoma lines and three fibroblast strains), were much more sensitive to BUdR, 0.03-0.1 micro M being the maximum tolerated levels for continuous growth. No virus production or changes in morphology were induced in these cells by BUdR, deoxyuridine (UdR), 5-fluorodeoxyuridine (FUdR) or thymidine (TdR). The results of cell labelling and growth studies showed a correlation of incorporation of BUdR into DNA with toxicity. Compared on a competitive basis with 1 micro M TdR, the order of incorporation of 1 micro M nucleosides by two human cell lines was TdR = BUdR = IUdR greater than UdR greater than FUdR. In contrast to previous reports that FUdR is incorporated into RNA but not into DNA, half of the FUdR label was found in alkalistable, DNase-sensitive material. Over 90% of the other compounds was incorporated into DNA. All of the UdR and 60% of the IUdR label was incorporated as thymidine; this conversion could be inhibited by labelling in the presence of FUdR.  相似文献   

6.
Clones resistant to 5-iodo-2-deoxyuridine (IUdR) were isolated from P388 cells and cultured in the absence of selective medium. Thymidine kinase assays were performed on 8 clones which had arisen spontaneously and 19 isolated after exposure to X-rays or alkylating agents. All the clones tested showed significantly reduced thymidine kinase activity relative to wild-type cultures, but none showed zero levels. 14 of these clones were tested for thymidine (TdR) uptake and all showed a marked reduction in the rate of [3H]TdR incorporation into acid soluble fractions and into DNA. 7 IUdR-resistant (IUdRr) clones were tested for revertibility as measured by growth of colonies in HAT medium. 5 of the 7 were found to revert at measurable rates either spontaneously or after a low dose of mutagen.Thymidine kinase activity was also measured in 8 thymidine resistant P388 clones (TdRr). Initial rates of thymidine phosphorylation were not significantly altered in 5 of the 8 clones tested but significantly lower amounts of phosphorylated products were observed in 6 of the 8 clones. [3H]TdR uptake was reduced in 9 of 12 clones tested, and 2 of them showed no corresponding reduction in the thymidine kinase activity, suggesting the occurence of mutants with altered permeability for thymidine.IUdR resistant L5178Y clones could not be isolated. Thymidine resistant L5178Y clones were similar to TdRr P388 clones, i.e. they showed changes in initial rates of thymidine kinase activity and reduced accumulation of phosphorylated products. Only one clone could be shown to be a membrane mutant. These results are discussed in relation to the genetic nature of the thymidine kinase locus in the two cell lines.  相似文献   

7.
DNA-mediated gene transformation of mouse Ltk-aprt-hprt-cells was used to obtain stable, doubly selected transformants simultaneously expressing herpes virus thymidine kinase (TK) and mammalian adenine phosphoribosyltransferase (APRT). Cotransformants occurred at a frequency of 5 X 10(-6), a similar frequency for the transfer of the aprt marker has been previously observed. Isozyme and Southern blot analysis show that the TK and APRT expressed in these transformants resulted from gene transfer. For one stable cotransformant, [3H]thymidine [( 3H]TdR) selection against TK activity resulted in the loss of APRT activity as well, suggesting that these genes had become genetically linked together. Similarly selection against APRT expression resulted in the loss of a subset of the transferred herpes simplex virus tk genes. 5-Bromodeoxyuridine (BUdR) selected TK- variants differed from [3H]TdR selected TK- variants, in that they retained tk genes. However, BUdR-selected variants expressed full levels of APRT. Therefore, even though the transferred tk and aprt genes had become genetically linked together, they were, in this case, independently expressed since these cells were phenotypically TK- and APRT+.  相似文献   

8.
Plasmid pJM81 contains a Herpes simplex virus thymidine kinase (TK) gene that is expressed in yeast. Cells containing the plasmid utilize thymidine (TdR) and the analogue 5-bromodeoxyuridine (BUdR) for specific incorporation into DNA. TdR auxotrophs, harboring plasmid pJM81 and a mutation in the yeast gene TMP1 require high concentrations of TdR (300 micrograms/ml) to support normal growth rates and the wild-type mitochondrial genome (rho+) cannot be maintained. We have identified a yeast gene, TUT1, in which recessive mutations allow efficient utilization of lower concentrations of TdR. Strains containing the mutations tmp1 and tut1, as well as plasmid pJM81, form colonies at 2 micrograms/ml TdR, grow at nearly normal rates and maintain the rho+ genome at 50 micrograms/ml TdR. These strains can be used to radiolabel DNA specifically and to synchronize DNA replication by TdR starvation. In addition, the substitution of BUdR for TdR allows the selective killing of DNA-synthesizing cells by 310-nm irradiation and allows the separation of replicated and unreplicated forms of DNA by CsCl equilibrium density banding. We also describe a unique, generally applicable system for cloning mutant alleles that exploits the fact that Tk+ yeast cells are sensitive to 5-fluorodeoxyuridine (FUdR) and that gene conversions can occur between a yeast chromosome and a TK-containing plasmid.  相似文献   

9.
Regulation of thymidine kinase synthesis in human cells   总被引:18,自引:0,他引:18  
  相似文献   

10.
Biochemical transformation of Ltk- cells with the herpes simplex virus thymidine kinase (tk) gene resulted in numerous TK+ colonies that survived selection in hypoxanthine-aminopterin-thymidine medium. Many of these TK+ cell lines switched phenotypes and reverted to the TK- state. In this report, we describe the biological and biochemical characteristics of three TK- revertant lines. One (K1B5) transiently expressed TK in the presence of bromodeoxyuridine, which selects for the TK- phenotype. Another TK- sibling (K1B6n) expressed TK only after removal from bromodeoxyuridine-containing medium. The last variant (K1B6me) lost the ability to switch to the TK+ phenotype, although it maintained the herpes simplex virus sequences coding for TK. Loss of the ability of K1B6me cells to express TK was correlated with extensive methylation of the sequence recognized by the restriction endonuclease HpaII (pCpCpGpG). After these cells were treated with 5-azacytidine, they regained the ability to clone in hypoxanthine-aminopterin-thymidine medium and reexpressed virus tk mRNA and enzyme. In addition, the HpaII sites that were previously shown to be refractile to enzyme digestion were converted to a sensitive state, demonstrating that they were no longer methylated.  相似文献   

11.
Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells.   总被引:342,自引:0,他引:342  
Treatment of Ltk?, mouse L cells deficient in thymidine kinase (tk), with Bam I restriction endonuclease cleaved DNA from herpes simplex virus-1 (HSV-1) produced tk+ clones with a frequency of 10?6/2 μg of HSV-1 DNA. Untreated cells or cells treated with Eco RI restriction endonuclease fragments produced no tk+ clones under the same conditions. The thymidine kinase activities of four independently derived clones were characterized by biochemical and serological techniques. By these criteria, the tk activities were found to be identical to HSV-1 tk and different from host wildtype tk. The tk+ phenotype was stable over several hundred cell generations, although the rate of reversion to the tk? phenotype, as judged by cloning efficiency in the presence of bromodeoxyuridine, was high (1–5 × 10?3). HSV-1 DNA Bam restriction fragments were separated by gel electrophoresis, and virtually all activity, as assayed by transfection, was found to reside in a 3.4 kb fragment. Transformation efficiency with the isolated fragment is 20 fold higher per gene equivalent than with the unfractionated total Bam digest. These results prove the usefulness of transfection assays as a means for the bioassay and isolation of restriction fragments carrying specific genetic information. Cells expressing HSV-1 tk may also provide a useful model system for the detailed analysis of eucaryotic and viral gene regulation.  相似文献   

12.
The degree of tolerance of two crown gall tumors and leaf calli ofArabidopsis thaliana to BUdR was compared. The nopaline producing teratoma tumor tolerated BUdR in concentration as high as 2.10?4 M. The tolerance of octopine producing unorganized crown gall tumor to BUdR was lower, but both exceeded significantly the degree of tolerance to BUdR of untransformedA. thaliana calli, where 10?5 M BUdR already show some inhibitory effect on the growth rate.  相似文献   

13.
A cytotoxic effect associated with 9-(1,3-dihydroxy-2-propoxymethyl)-guanine (DHPG) was discovered while searching for spontaneous mutations in a single copy, integrated HSV-1 thymidine kinase (TK) gene in the human 143 TK- cell line. It was found that spontaneous DHPGR mutations could not be selected while other anti-TK drugs resulted in selectable mutation frequencies of 10(-4) to 10(-3). When 143 TK- cells were mixed with these HSV-1 TK+ cells and subjected to DHPG, a 90% to 100% decrease in recoverable TK- colonies was observed. In addition, the media from the HSV-1 TK+ cells metabolizing DHPG was shown to inhibit the growth of the TK- cells.  相似文献   

14.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

15.
Mutations which allow tolerance to 5-bromo-2'-deoxyuridine (BUdR) in a thymidine (TdR)-requiring strain of Bacillus subtilis have been examined. Differences in sensitivity to BUdR existed between isogenic strains harbouring the mutations. Those mutations originally isolated as BUdR-tolerant also bestowed tolerance to 5-bromouracil and vice versa. The strain exhibiting the greatest tolerance to BUdR maintained a normal rate of replication in the presence of BUdR whereas the parent strain did not, but the tolerant strain incorporated less analogue into DNA than the parent strain. The basis of the tolerance mutation appeared to lie at the point of uptake of the analogue into the cell as the tolerant mutant preferentially took up TdR over BUdR into whole cells. DNA polymerase activity measured in vitro did not distinguish between TdR and BUdR in either the parent or the mutant strain and although TdR kinase activity showed a preference for TdR over BUdR as a substrate, the extent of discrimination was similar in both strains.  相似文献   

16.
The sensitivity of diploid human fibroblasts to the cytotoxic effects of diphtheria toxin (DT) depended on the cell growth status. Exponentially growing cells treated with 10?3-1 lethal flocculating units (LF) of DT/ml for 4 days survived with a frequency of 4 × 10?4. However, the DT-resistant phenotype of colonies isolated under these conditions was not stable. When the growth of the cells had been arrested by confluence or deprivation of serum growth factors prior to treatment with DT (4 days, 10?3-0.6 LF/ml), the survival decreased to 2 × 10?6 and the resistance of isolated colonies was stable. An in situ assay for induced DT-resistant mutants was developed in order to avoid problems associated with the possible reduced viability of the mutants relative to that of wild-type cells. A reproducible and linear dose response was obtained for the induction of DT-resistant mutants by ethylnitrosourea. The mutants were induced with high frequency by this compound (e.g., 10?3 mutants/viable cell at a 37% survival dose); complete expression of the mutant phenotype occurred after 6 generations of growth under nonselective conditions. Isolated mutant colonies showed stable resistance to DT and were cross-resistant to Pseudomonas aeruginosa exotoxin A.  相似文献   

17.
Erythroid differentiation of Friend leukemia cells is enhanced when the cells are grown for four days in the presence of dimethylsulfoxide (DMSO). Dimethylformamide (DMF) has a similar though less marked effect. 5-Bromo-2′-deoxyuridine (BUdR) (10?5M) inhibits both DMF- and DMSO-stimulated differentiation. For maximum inhibition, BUdR must be present during the first two days of growth, during which time DNA synthesis is maximal. The addition of BUdR after the third day has no effect. Since BUdR is incorporated into DNA and thymidine prevents BUdR inhibition of DMSO-stimulated differentiation, it is likely that BUdR acts by virtue of its incorporation into DNA. Although BUdR alone had little effect upon cell multiplication, in combination with DMSO, cell growth was inhibited up to 40%. Since the BUdR-inhibition of the DMSO effect was approximately 70%, it is unlikely that its effect on differentiation is due to selective killing of those cells which are stimulated to differentiate.  相似文献   

18.
Morgan Harris 《Cell》1982,29(2):483-492
Previous work with Chinese hamster cells suggests that thymidine kinase deficiency and loss of potential for plating in HAT medium may arise by a process of mutation coupled with site-specific repression by bromodeoxyuridine at the tk locus. In this study, tk? Chinese hamster cells were exposed to a series of inductors to determine whether revertants for the putative second stage originate by genetic or epigenetic change. Brief exposure to 5-azacytidine resulted in massive conversion to the HAT+ state, and revertants showed levels of thymidine kinase activity intermediate between those of tk? and wild-type cells. By contrast, incidence of HAT+ cells rose only slightly in populations mutagenized with ethyl methanesulfonate. Large increases in frequency of HAT+ cells were obtained by treatment with n-butyrate and L-ethionine, which affect gene expression in other cell systems but have no known mutagenic potential. Induction of HAT+ revertants seems to be mediated by a stable epigenetic shift, which reverses the gradual extinction of thymidine kinase activity in the parent cells. The data support the view that induction in Chinese hamster cells results from changes in DNA methylation patterns, and suggest studies to define the process in molecular terms.  相似文献   

19.
A line of HeLa cells resistant to 5-bromo-2′-deoxyuridine (BUdR) was established by continuous culture in growth medium containing BUdR; during the selection period, BUdR concentrations, initially 15 μM, were gradually increased to 100 μM. Cells of a clone (HeLa/B5) established from this line were also resistant to 5-fluoro-2′-deoxyuridine (FUdR), but not to the free base, 5-fluorouracil. Although extracts of HeLa/B5 cells exhibited levels of thymidine kinase activity comparable to those of parental cells, rates of uptake of BUdR, FUdR, and thymidine into intact cells were much reduced. The kinetics of uptake of uridine and adenosine, nucleosides which appear to be transported independently of thymidine in HeLa cells, were similar for HeLa/B5 and the parental line (HeLa/0). Relative to thymidine uptake by HeLa/0 cells, that by HeLa/B5 cells was distinctly less sensitive to nitrobenzlthionosine (NBMPR), a specific inhibitor of nucleoside transport in various types of animal cells. Despite this difference in NBMPR sensitivity, both cell lines possessed the same number of high affinity NBMPR binding sites per mg cell protein. The altered kinetics of thymidine uptake and the NBMPR insensitivity of that function in HeLa/B5 cells suggest that resistance to BUdR is due to an altered thymidine transport mechanism.  相似文献   

20.
MTX cytotoxicity is not fully explained by its well-known inhibition of dihydrofolate reductase activity which leads to a decrease in the dTMP synthase reaction, since TdR kinase which converts TdR to dTMP could readily circumvent MTX action through this salvage activity. TdR kinase is of particular significance, since in various types of carcinoma cells its activity is orders of magnitude higher than that of dTMP synthase. To throw light on this problem, we tested the hypothesis that the impact of MTX treatment might in fact involve an inhibition or decrease in TdR kinase activity. Injection in rat of MTX (i.p.) decreased TdR kinase activity in a time- and dose-dependent fashion in liver (t1/2 = 46 h; IC50 = 95 mg/kg), bone marrow (t1/2 = 10 h; IC50 = 5 mg/kg) and rapidly growing transplantable hepatoma 3924A (t1/2 = 56 h; IC50 = 5 mg/kg). Injection in rat of cycloheximide (15 mg/kg, i.p.), an inhibitor of protein biosynthesis, rapidly decreased TdR kinase activity in the hepatoma (t1/2 = 3.6 h); activities of other purine and pyrimidine synthetic enzymes, dTMP synthase, IMP dehydrogenase, GMP reductase and GMP synthase, declined at a markedly slower rate (t1/2 = 11, 11.6, 12 and 22 h, respectively). MTX, by curtailing purine and pyrimidine biosynthesis, limits product of TdR kinase which is more sensitive to unopposed protein degradation than other enzymes of nucleic acid biosynthesis. TdR kinase is a newly discovered target of MTX treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号