首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To find out potent inhibitors of S-adenosylhomocysteine hydrolase (SAHase), several deazaadenosine analogues synthesized in this laboratory and some naturally occurring nucleoside analogues were examined with SAHases from yellow lupin seeds and rabbit liver. Neplanocin A, an antibiotic, inhibited both enzymes more potently than aristeromycin which was also an antibiotic and known as one of the most potent inhibitors of SAHase. The 3-deazaadenine derivatives (2'-deoxy, arabinosyl, xylosyl) inactivated lupin SAHase as potent as 3-deazaadenosine. Whereas, inhibitory activities of 1-deazaadenosine, its derivatives, and 7-deazaadenosine (tubercidin) were very weak.  相似文献   

2.
Elevated plasma homocysteine (Hcy) levels are an independent risk factor for the onset and progression of Alzheimer’s disease. Reduction of Hcy to normal levels therefore presents a new approach for disease modification. Hcy is produced by the cytosolic enzyme S-adenosylhomocysteine hydrolase (AHCY), which converts S-adenosylhomocysteine (SAH) to Hcy and adenosine. Herein we describe the design and characterization of novel, substrate-based S-adenosylhomocysteine hydrolase inhibitors with low nanomolar potency in vitro and robust activity in vivo.  相似文献   

3.
Four 5'-substituted fluoro-neplanocin A analogues la-d were designed and synthesized, and the inhibitory activity against SAH was in the following order: NH2 > SH > F, N3, indicating a hydrogen bonding donor is essential for inhibitory activity.  相似文献   

4.
The kinetic mechanism of S-adenosylhomocysteine hydrolase was investigated by stopped-flow spectrofluorometry at pH 7.0 and 25 degrees C. Pre-steady-state kinetic steps were identified with chemical steps proposed for the mechanism of this enzyme (Palmer, J.L., and Abeles, R.H. (1979) J. Biol. Chem. 254, 1217-1226). The steady-state kinetic constants for the hydrolysis or synthesis of S-adenosylhomocysteine were in good agreement with those values calculated from the pre-steady-state rate constants. The equilibrium constant for dehydration of 3'-ketoadenosine to 3'-keto-4',5'-dehydroadenosine on the enzyme was 3. The analogous equilibrium constant for addition of L-homocysteine to S-3'-keto-4',5'-dehydroadenosylhomocysteine on the enzyme was 0.3. The elimination of H2O from adenosine in solution had an equilibrium constant of 1.4 (aH2O = 1). Thus, the equilibrium constants for these elimination reactions on the enzyme were probably not perturbed significantly from those in solution. The equilibrium constant for the reduction of enzyme-bound NAD+ by adenosine was 8, and the analogous constant for the reduction of the enzyme by S-adenosylhomocysteine was 4. The equilibrium constant for the reduction of NAD+ by a secondary alcohol in solution was 5 x 10(-5) at pH 7.0. Consequently, the reduction of enzyme-bound NAD+ by adenosine was 10(5)-fold more favorable than the reduction of free NAD+. The magnitude of the first-order rate constants for the interconversion of enzyme-bound intermediates varied over a relatively small range (3-80 s-1). Similarly, the magnitude of the equilibrium constants among enzyme-bound intermediates varied over a narrow range (0.3-10). These results were consistent with the overall reversibility of the reaction.  相似文献   

5.
The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase.  相似文献   

6.
Fluoro-DHCeA (4) was efficiently synthesized from d-cyclopentenone derivative 5 using electrophilic fluorination as a key step. Fluoro-DHCeA (4) was found to be as potent as DHCeA (3), but exhibited irreversible inhibition of enzyme unlike DHCeA (3) showing reversible inhibition. From this study, 4(')-hydroxymethyl groups of neplanocin A and fluoro-neplanocin A played an important role in binding to the active site of the enzyme.  相似文献   

7.
S-Adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) was purified to apparent homogeneity from bovine liver, bovine adrenal cortex and mouse liver. All enzymes were tetramers, composed of two types of subunit present in the proportion 1:1, as judged by SDS-polyacrylamide gel electrophoresis. The partition coefficient was exactly the same for these enzymes on high-performance gel permeation chromatography, and they co-sedimented in density gradients, suggesting the same molecular size and form of S-adenosylhomocysteine hydrolase from these sources. The bovine enzymes differed from the mouse liver enzyme with respect to isoelectric point (pI = 5.35, versus pI = 5.7), affinity for DEAE-cellulose, and migration of subunits on SDS-polyacrylamide gel electrophoresis with SDS from some commercial sources. The enzymes were not substrates for cAMP-dependent protein kinase. The apparent Km values for adenosine (0.2 microM) and S-adenosylhomocysteine (0.75 microM) were the same for all three enzymes. The ratio between Vmax for the synthesis and hydrolysis of S-adenosylhomocysteine was about 4 for the mouse liver enzyme, and about 6 for the bovine enzymes. It is concluded that only subtle kinetic and physicochemical differences exist between S-adenosylhomocysteine hydrolase from these bovine and mouse tissues. This suggests that differences in experimental procedures rather than species- and organ-differences of S-adenosylhomocysteine hydrolase are responsible for the variability in kinetic and physicochemical parameters reported for the mammalian hydrolase.  相似文献   

8.
S-Adenosylhomocysteine hydrolase (AdoHcy-nase) is a key enzyme in transmethylation reactions. The objective of the present study was to examine the potential antiretroviral activities of novel mechanism-based irreversible AdoHcy-nase inhibitors. (Z)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (ZDDFA), (E)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (EDDFA), (Z)-4',5'-didehydro-5'-deoxy-5'-chloroadenosine (ZDDCA) and 5'-deoxy-5'-acetylenic adenosine (DAA) inhibited AdoHcy-nase activity with Ki values of 0.55, 1.04, greater than 10.0 and 3.30 microM, respectively. These four compounds were tested for antiviral activity in vitro against Moloney leukemia virus (MoLV) in the XC-plaque assay. MoLV replication in murine fibroblasts (SC-1) was inhibited by ZDDFA, EDDFA and DAA with IC50 values of 0.05, 0.25 and 3.30 micrograms/ml, respectively. ZDDCA did not inhibit MoLV infection at the concentrations tested. Antiviral activity correlated with the ability of the individual compounds to maintain sustained elevations in intracellular S-adenosylhomocysteine (AdoHcy) concentrations in the SC-1 cells. ZDDFA, the most potent inhibitor of AdoHcy-nase and MoLV was also the most active in maintaining sustained elevations in intracellular AdoHcy levels. The antiviral activity of ZDDFA was also examined in murine C3H1OT1/2 fibroblasts which constitutively produce MoLV. Pretreatment with ZDDFA (1.0 microgram/ml) for 24 hr inhibited virus production by 88%. Similar to the SC-1 cells, and concomitant with enzyme inhibition, there was a 300-fold increase in AdoHcy levels in ZDDFA (1.0 microgram/ml) treated C3H1OT1/2 cells. Incorporation of a [3H]methyl group from tritiated S-adenosylmethionine into total RNA in C3H1OT1/2 cells was inhibited by ZDDFA without affecting cell viability. These results suggest that mechanism-based inhibitors of AdoHcy-nase, such as ZDDFA, may have potential as antiretroviral agents.  相似文献   

9.
Crystal structure of S-adenosylhomocysteine hydrolase from rat liver.   总被引:5,自引:0,他引:5  
The crystal structure of rat liver S-adenosyl-L-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) which catalyzes the reversible hydrolysis of S-adenosylhomocysteine (AdoHcy) has been determined at 2.8 A resolution. AdoHcyase from rat liver is a tetrameric enzyme with 431 amino acid residues in each identical subunit. The subunit is composed of the catalytic domain, the NAD+-binding domain, and the small C-terminal domain. Both catalytic and NAD+-binding domains are folded into an ellipsoid with a typical alpha/beta twisted open sheet structure. The C-terminal section is far from the main body of the subunit and extends into the opposite subunit. An NAD+ molecule binds to the consensus NAD+-binding cleft of the NAD+-binding domain. The peptide folding pattern of the catalytic domain is quite similar to the patterns observed in many methyltransferases. Although the crystal structure does not contain AdoHcy or its analogue, there is a well-formed AdoHcy-binding crevice in the catalytic domain. Without introducing any major structural changes, an AdoHcy molecule can be placed in the catalytic domain. In the structure described here, the catalytic and NAD+-binding domains are quite far apart from each other. Thus, the enzyme appears to have an "open" conformation in the absence of substrate. It is likely that binding of AdoHcy induces a large conformational change so as to place the ribose moiety of AdoHcy in close proximity to the nicotinamide moiety of NAD+. A catalytic mechanism of AdoHcyase has been proposed on the basis of this crystal structure. Glu155 acts as a proton acceptor from the O3'-H when the proton of C3'-H is abstracted by NAD+. His54 or Asp130 acts as a general acid-base catalyst, while Cys194 modulates the oxidation state of the bound NAD+. The polypeptide folding pattern of the catalytic domain suggests that AdoHcy molecules can travel freely to and from AdoHcyase and methyltransferases to properly regulate methyltransferase activities. We believe that the crystal structure described here can provide insight into the molecular architecture of this important regulatory enzyme.  相似文献   

10.
A range of novel 1,2,3-triazolylalkylribitol derivatives were synthesized and evaluated as nucleoside hydrolase inhibitors. The most active compound (11a) has low micromolar potency and is structurally diverse from previously reported nucleoside hydrolase inhibitors, which, along with the simplicity of the chemistry involved in its synthesis, makes it a good lead for the further development of novel nucleoside hydrolase inhibitors.  相似文献   

11.
Diseases caused by parasitic protozoa remain a major health problem, mainly due to old toxic drugs and rising drug resistance. Nucleoside hydrolases are key enzymes of the purine salvage pathway of parasites from the Trypanosomatidae family and are considered as possible drug targets. N-Arylmethyl substituted iminoribitols have been developed as selective nanomolar affinity inhibitors against the purine-specific nucleoside hydrolase of Trypanosoma vivax. The current paper describes the crystal structures of the T. vivax nucleoside hydrolase in complex with two of these inhibitors, to 1.3 and 1.85 Å resolution. These high resolution structures provide an accurate picture of the mode of binding of these inhibitors and their mechanism of transition-state mimicry, and are valuable tools to guide further inhibitor design. Comparison of the current structures with previously solved structures of the enzyme in complex with ground-state and transition-state-analogue inhibitors also allows for the elucidation of a detailed molecular mechanism of active-site loop opening/closing. These loop movements can be coupled to the complex kinetic mechanism of the T. vivax nucleoside hydrolase.  相似文献   

12.
Neoplanocin A, a cyclopentenyl analog of adenosine, has been shown recently to be a tight binding inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase (EC 3.3.1.1), exhibiting a stoichiometry of one molecule of inhibitor per molecule of the enzyme tetramer (Borchardt, R. T., Keller, B. T., and Patel-Thombre, U. (1984) J. Biol. Chem. 259, 4353-4358). In the present study a detailed analysis was performed of the possible role of the enzyme-bound NAD+ in the inactivation of AdoHcy hydrolase by neplanocin A. The NAD+/NADH content was quantitated using a fluorescence technique. The native enzyme showed intrinsic fluorescence with an emission maximum at 460 nm when excited at 340 nm, partially due to NADH bound to the enzyme. It was found that the content of NAD+ and NADH in freshly prepared, native enzyme is equal, having a stoichiometry of two nucleotides per enzyme molecule (tetramer). In addition, it was observed that the enzymatic activity of the native enzyme can be increased by about 30% following preincubation with NAD+. Furthermore, it was demonstrated that the mechanism of inhibition of AdoHcy hydrolase by neplanocin A involves the reduction of enzymatically bound NAD+ to NADH. Catalytic activity of the inactivated enzyme could be fully recovered in a time-dependent manner by further incubation with NAD+ (but not NADH). It was also found that inhibition by neplanocin A does not involve dissociation of the bound NAD+ or NADH from the enzyme, but simply reduction of the NAD+ to NADH.  相似文献   

13.
Soluble epoxide hydrolase (sEH) is a novel target for the treatment of hypertension and vascular inflammation. A new class of potent non-urea sEH inhibitors was identified via high throughput screening (HTS) and chemical modification. IC50s of the most potent compounds range from micromolar to low nanomolar.  相似文献   

14.
Structure and function of S-adenosylhomocysteine hydrolase   总被引:6,自引:0,他引:6  
In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.  相似文献   

15.
Polymorphism of S-adenosylhomocysteine hydrolase in Italy   总被引:1,自引:0,他引:1  
S-adenosylhomocysteine hydrolase (SAHH) polymorphism has been investigated in the Italian population. Three common alleles, SAHH*1, SAHH*2 and SAHH*3, have been observed and the estimated gene frequencies are 0.968, 0.023 and 0.009, respectively. SAHH activity has been assayed in 50 healthy individuals and the mean activity was 0.043 +/- 0.017 mumol uric acid/min/g Hb at 37 degrees C. Five heterozygotes for adenosine deaminase deficiency and three heterozygotes for purine nucleoside phosphorylase deficiency showed SAHH within the range of the normal distribution. The effects of some thiol reagents on red blood cell SAHH electrophoretic pattern have been investigated.  相似文献   

16.
The irreversible inactivation of S-adenosylhomocysteine hydrolase purified from hamster and bovine liver by adenosine analogs substituted in the 5' and 2 positions has been investigated in detail. 5'-Cyano-5'-deoxyadenosine inactivates as potently as 9-beta-D-arabinofuranosyladenine (Ara-A). Substitution of the Ara-A at the 2 position by halogens or deleting N at the 3 position decreases its potency. Although weak, 2',3'-dideoxyadenosine can also inactivate the enzyme. The irreversible inactivation of the hydrolase in rat hepatocytes incubated with 2-chloroadenosine or 3-deaza-Ara-A could be demonstrated, concomitant with increases in 35S-labeled S-adenosylhomocysteine and S-adenosylmethionine in the hepatocytes.  相似文献   

17.
Halogenated analogues of neplanocin A were synthesized from the key intermediate 1, among which fluoro-neplanocin A was found to be novel mechanism-based irreversible inhibitor of S-Adenosylhomocysteine hydrolase.  相似文献   

18.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase, E.C. 3.3.1.1) catalyzes the metabolism of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine (Hcy) in mouse neuroblastoma N2a cells. AdoHcy hydrolase in N2a cells can be inhibited completely by adenosine dialdehyde (Ado dialdehyde) or neplanocin A. The inhibitory effects of Ado dialdehyde (2.5 μM) and neplanocin A (1 μM) on cellular AdoHcy hydrolase were time-dependent, with total enzyme inhibition occurring after 30 min and 15 min of incubation, respectively. The inhibition of AdoHcy hydrolase produced by Ado dialdehyde and neplanocin A persisted for up to 72 h of incubation, and was paralleled by a time-dependent increase in endogenous AdoHcy levels reaching a maximum 4-fold elevation after 8 h of incubation with Ado dialdehyde and an 11-fold increase in the neplanocin A-treated cells. This increase in AdoHcy levels produced a subsequent inhibition of S-adenosylmethionine (AdoMet)-dependent cellular methylations (e.g. protein carboxylmethylation (PCM), lipid methylation). In addition, neplanocin A was metabolically converted to the corresponding AdoMet analog, S-neplanocylmethionine (NepMet), in neuroblastoma N2a cells. NepMet reached maximum levels after 8 h of incubation of the cells with neplanocin A.  相似文献   

19.
We have analyzed the level of substrate (AdoMet) and products (AdoHcy) of transmethylations throughout the developmental cycle of the primitive eukaryote Dictyostelium discoideum. The ratio AdoMet/AdoHcy varied dramatically during differentiation. The intracellular level of AdoHcy decreased sharply after the beginning of starvation reaching a value of 18% of that in vegative cells within 4 h. In contrast, there was a two-fold transient increase in AdoMet at the time of aggregation. However, these changes were not related to changes in AdoHcy hydrolase since constant levels of both the protein and the activity were found until 16 h of differentiation. In particular, there was no indication of an in vivo inactivation of the enzyme by cAMP at the time of aggregation. These results are discussed with respect to the previously postulated role of AdoHcy hydrolase in the regulation of the AdoMet/AdoHcy ratio in eukaryotic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号