首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A developing maize leaf grows by the activity of a basal meristematic region and an adjacent elongating zone, resulting in a morphological and functional gradient along the leaf. We have used this system to detect the spatial and temporal expression of an enzyme, sucrose synthase, which plays a pivotal role in the sucrose import-export transition which occurs along a monocotyledon leaf. Immunogold labeling was used to detect the cellular and sub-cellular distribution of sucrose synthase (SS) at the electron microscopical level; the protein was visualized using a polyclonal antiserum on embedded tissue sections. Immunolabel was observed in the cytosol of dividing meristematic cells, expanding cells of the elongation zone, and in differentiating cells of young photosynthetic tissue. In fully differentiated leaf tissue, however, the protein was no longer immuno-detectable in photosynthetic cells, but was present in the guard and subsidiary cells of stomata and in companion cells within the phloem tissue of vascular bundles. The tissue- and cell-specific localization of sucrose synthase changes along the growing leaf as a function of the developmental state and the associated need for sucrose import or export.  相似文献   

2.
Experiments were conducted in controlled growth chambers to evaluate how increase in CO2 concentration affected sucrose metabolizing enzymes, especially sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13), as well as carbon metabolism and partitioning in a tropical epiphytic orchid species (Oncidium goldiana). Response of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) to elevated CO2 was determined along with dry mass production, photosynthesis rate, chlorophyll content, total nitrogen and total soluble protein content. After 60 days of growth, there was a 80% and 150% increase in dry mass production in plants grown at 750 and 1 100 μl l?1 CO2, respectively, compared with those grown at ambient CO2 (about 370 μl l?1). A similar increase in photosynthesis rate was detected throughout the growth period when measured under growth CO2 conditions. Concomitantly, there was a decline in leaf Rubisco activity in plants in elevated CO2 after 10 days of growth. Over the growth period, leaf SPS and SS activities were up‐regulated by an average of 20% and 40% for plants grown at 750 and 1100 μl l?1 CO2, respectively. Leaf sucrose content and starch content were significantly higher throughout the growth period in plants grown at elevated CO2 than those at ambient CO2. The partitioning of photosynthetically fixed carbon between sucrose and starch appeared to be unaffected by the 750 μl l?1 CO2 treatment, but it was favored into starch under the 1 100 μl l?1 CO2 condition. The activities of SPS and SS in leaf extracts were closely associated with photosynthetic rates and with partitioning of carbon between starch and sucrose in leaves. The data are consistent with the hypothesis that the up‐regulation of leaf SPS and SS might be an acclimation response to optimize the utilization and export of organic carbon with the increased rate of inorganic‐carbon fixation in elevated CO2 conditions.  相似文献   

3.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

4.
Summary Data on changes of apparent activities of enzymes involved in sucrose metabolism of developing spruce needles are presented. Extractable activities of sucrose phosphate synthase (SPS, sucrose synthesis), and sucrose synthase (SS) and acid invertase (both sucrolysis) were determined in small volumes using a novel microplate reader system which combined high rates of activity with good reproducibility and high sample throughput. During a developmental period of up to 18 months after bud break characteristic changes in SPS and SS occurred. During the first 4 months of needle development SS declined while SPS increased which is indicative of a transition from net import to net export of photoassimilates (sink/source transition). After needle maturation both enzymes exhibited parallel annual changes with increasing rates towards autumn, which was mirrored by the pool sizes of sucrose (possibly due to the acquisition of frost hardiness). Acid invertase activity was comparable to that of SS but showed only marginal seasonal changes. Approximately 70% of its total activity was found to be soluble.  相似文献   

5.
The in vivo and in vitro nitrate effects on pea (Pisum sativum L.) sucrose synthase (SS) were studied. At the period of plant transition from heterotrophic to autotrophic nutrition, exogenous nitrate (14.2 mM) absorbed in the form of KNO3 and Ca(NO3)2 during 10–20 days activated SS in the roots by 22–100% as compared with plants grown on nitrogen-free medium. Such effect was observed only at plant growing under high light (natural illumination up to 25 klx) and thus their sufficient supplement with sucrose. Under low light (climate-controlled chamber, 2.5 klx), nitrate could not activate SS. In the in vitro experiments, nitrate activated SS exponentially by a dose-dependent mode with the plateau at 3–5 mM, where its activity was increased by 50%. It is supposed that there is a second constituent in SS activation by nitrate, and it carries information about plant carbohydrate status. Possible mechanisms of nitrate-induced SS activation are discussed.  相似文献   

6.
Diel variations in rates of C export, sucrose-phosphate synthase (SPS) and sucrose synthase (SS) activity, and C reserves were investigated in Zostera marina L. (eelgrass) to elucidate the environmental regulation of sucrose formation and partitioning in this ecologically important species. Rates of C flux and SPS activity increased with leaf age, consistent with the ontogenic transition from sink to source status. Rates of C export and photosynthesis were low but quantitatively consistent with those of many terrestrial plant species. The Vmax activity of SPS approached that of maize, but substrate-limited rates were 20 to 25% of Vmax, indicating a large pool of inactive SPS. SPS was unresponsive to the day/night transition or to a 3-fold increase in photosynthesis generated by high [CO2] and showed little sensitivity to inorganic phosphate. Consequently, regulation of eelgrass SPS appeared similar to starch- rather than to sugar-accumulating species even though eelgrass accumulates sucrose. Leaf [sucrose] was constant and high throughout the diel cycle, which may contribute to the down-regulation of SPS. Root sucrose synthase activity was high but showed no response to nocturnal anoxia. Root [sucrose] also showed no diel cycle. The temporal stability of [sucrose] confers an ability for eelgrass to buffer the effects of prolonged light limitation that may be key to its survival and ecological success in environments subject to periods of extreme light limitation and chaotic daily variation in light availability.  相似文献   

7.
Plasma membrane fractions were isolated from maize (Zea mays L.) endosperms and etiolated kernels to investigate the possible membrane location of the sucrose synthase (SS) protein. Endosperms from seedlings at both 12 and 21 days after pollination (DAP), representing early and mid-developmental stages, were used, in addition to etiolated leaf and elongation zones from seedlings. Plasma membrane fractions were isolated from this material using differential centrifugation and aqueous two-phase partitioning. The plasma membrane-enriched fraction obtained was then analyzed for the presence of sucrose synthase using protein blots and activity measurements. Both isozymes SS1 and SS2, encoded by the lociSh1 andSus1, respectively, were detected in the plasma membrane-enriched fraction using polyclonal and monoclonal antisera to SS1 and SS2 isozymes. In addition, measurements of sucrose synthase activity in plasma membrane fractions of endosperm revealed high levels of specific activity. The sucrose synthase enzyme is tightly associated with the membrane, as shown by Triton X-100 treatment of the plasma membrane-enriched fraction. It is noteworthy that the gene products of bothSh1 andSus1 were detectable as both soluble and plasma membrane-associated forms.  相似文献   

8.
We studied the effects of synthetic analogs of phytohormones (benzyladenine, IAA, and GA) on the activities of the enzymes catalyzing sucrose synthesis and metabolism, sucrose phosphate synthase (SPS, EC 2.4.1.14) and sucrose synthase (SS, EC 2.4.1.13), and on the content of chlorophyll and protein during the sugar-beet (Beta vulgaris L.) ontogeny. Plant spraying with phytohormonal preparations activated SPS in leaves; direct interaction between phytohormones and the enzyme also increased its activity. The degree of this activation differed during the ontogeny and in dependence on the compound used for treatment. Analogs of phytohormones maintained high protein level in leaves, retarded chlorophyll breakdown, and, thus, prolonged leaf functional activity during development. Phytohormonal preparations practically did not affect the SS activity both after plant treatment and at their direct interaction with the enzyme. It is supposed that the SS activity in sugar-beet roots is controlled by sucrose synthesized in leaves rather than by phytohormones. The effects of hormones on leaf metabolism were mainly manifested in growth activation.  相似文献   

9.
Sun J  Loboda T  Sung SJ  Black CC 《Plant physiology》1992,98(3):1163-1169
Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers. To check for novel characteristics, the wild tomato fruit sucrose synthase was purified, by (NH4)2SO4 fraction and chromatography with DE-32, Sephadex G-200, and PBA-60, to one major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The following characteristics were obtained: native protein relative molecular weight 380,000; subunit relative molecular weight 89,000; Km values with: sucrose 53 millimolar, UDP 18.9 micromolar, UDP-glucose 88 micromolar, fructose 8.4 millimolar; pH optima between 6.2 to 7.3 for sucrose breakdown and 7 to 9 for synthesis; and temperature optima near 50°C. The enzyme exhibited a high affinity and a preference for uridylates. The enzyme showed more sensitivity to divalent cations in the synthesis of sucrose than in its breakdown. Sink strength in tomato fruits also was investigated in regard to sucrose breakdown enzyme activities versus fruit weight gain. Sucrose synthase activity was consistently related to increases in fruit weight (sink strength) in both wild and commercial tomatoes. Acid and neutral invertases were not, because the published invertase activity values were too variable for quantitative analyses regarding the roles of invertases in tomato fruit development. In rapidly growing fruits of both wild and commercially developed tomato plants, the activity of sucrose synthase per growing fruit, i.e. sucrose synthase peak activity X fruit size, was linearly related to final fruit size; and the activity exceeded fruit growth and carbon import rates by at least 10-fold. In mature, nongrowing fruits, sucrose synthase activities approached nil values. Therefore, sucrose synthase can serve as an indicator of sink strength in growing tomato fruits.  相似文献   

10.
The activity of sucrose-phosphate synthase (SPS) in sugar beet (Beta vulgaris L.) leaves was shown to exceed considerably the synthesizing activity of sucrose synthase (SS). The rise in SPS activity was related to the daylight period; i.e., it was associated with the rate of photosynthesis. The highest SPS activity was characteristic of fully expanded source leaves. In young developing leaves (leaves expanded to less than half of their final size), which represent the sink organs, the SPS activity was 2.5 times lower. At all stages of leaf development, the synthesizing SS activity was rather low. The diurnal change of SS activity was independent of photosynthesis and showed a slight rise from 6:00–8:00 p.m. Under field conditions, the highest SPS activity was found in leaves in the terminal stage of their development (105-day-old plants); the synthesizing activity of SS showed little changes during this period. The activity of soluble acid invertase was characteristic of young leaves. In mature leaves, the activity of this enzyme correlated with the daylight period. These changes occurred on the background of low sucrose content in leaves. The regulation of SPS, SS, and invertase activity is discussed. It is supposed that compartmentation of these enzymes in the photosynthesizing cell is important for transport, metabolism, and the osmotic function of sucrose in leaves.  相似文献   

11.
In celery (Apium graveolens L.), the two major translocated carbohydrates are sucrose and the acyclic polyol mannitol. Their metabolism, however, is different and their specific functions are uncertain. To compare their roles in carbon partitioning and sink-source transitions, developmental changes in 14CO2 labeling, pool sizes, and key enzyme activities in leaf tissues were examined. The proportion of label in mannitol increased dramatically with leaf maturation whereas that in sucrose remained fairly constant. Mannitol content, however, was high in all leaves and sucrose content increased as leaves developed. Activities of mannose-6-P reductase, cytoplasmic and chloroplastic fructose-1,6-bisphosphatases, sucrose phosphate synthase, and sucrose synthase increased with leaf maturation and decreased as leaves senesced. Ribulose bisphosphate carboxylase and nonreversible glyceraldehyde-3-P dehydrogenase activities rose as leaves developed but did not decrease. Thus, sucrose is produced in all photosynthetically active leaves whereas mannitol is synthesized primarily in mature leaves and stored in all leaves. Onset of sucrose export in celery may result from sucrose accumulation in expanding leaves, but mannitol export is clearly unrelated to mannitol concentration. Mannitol export, however, appears to coincide with increased mannitol biosynthesis. Although mannitol and sucrose arise from a common precursor in celery, subsequent metabolism and transport must be regulated separately.  相似文献   

12.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

13.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

14.
The import-export transition in sugar beet leaves (Beta vulgaris) occurred at 40 to 50% leaf expansion and was characterized by loss in assimilate import and increase in photosynthesis. The metabolism and partitioning of assimilated and translocated C were determined during leaf development and related to the translocation status of the leaf. The import stage was characterized by C derived from either 14C-translocate or 14C-photosynthate being incorporated into protein and structural carbohydrates. Marked changes in the C partitioning were temporally correlated with the import-export conversion. Exporting leaves did not hydrolyze accumulated sucrose and the C derived from CO2 fixation was preferentially incorporated into sucrose. Both source and sink leaves contained similar levels of acid invertase and sucrose synthetase activities (sucrose hydrolysis) while sucrose phosphate synthetase (sucrose synthesis) was detected only in exporting leaves. The results are discussed in terms of intracellular compartmentation of sucrose and sucrose-metabolizing enzymes in source and sink leaves.  相似文献   

15.
A full-length cDNA clone encoding sucrose synthase (SS; EC 2.4.1.13) was isolated from muskmelon (Cucumis melo L.) by RT-PCR and RACE. The clone, designated as CmSS1, contains 2,585 nucleotides with an open reading frame of 2,412 nucleotides. The deduced 804 amino acid sequence showed high identities with other plant sucrose synthase. Real time PCR analysis indicated that CmSS1 expression differed among root, stem, leaf, flower and fruit tissues. The analysis during fruit development indicated that CmSS1 mRNA showed its maximum level at 5 days after pollination (DAP) and decreased gradually during fruit development until its minimum level in mature fruit. The sucrose content was very low in fruit before 20 DAP but increased dramatically between 20 and 30 DAP during fruit development. However, SS activities in both direction of sucrose synthesis and sucrose cleavage were very low and changed little during fruit development, suggesting that SS may play little role in determining sucrose accumulation during muskmelon fruit.  相似文献   

16.
以不同发育时期灵武长枣为试材,测定果实生长发育过程中叶片、果柄可溶性糖含量及蔗糖代谢相关酶活性的变化,探讨果实生长发育过程中叶片、果柄糖的积累与蔗糖代谢相关酶活性的关系。结果表明:(1)灵武长枣叶片、果柄均主要以积累蔗糖为主,叶片、果柄中葡萄糖和果糖含量的变化平缓且随果实发育略有上升,蔗糖含量则呈先下降后迅速上升的趋势,且蔗糖含量始终高于葡萄糖和果糖的含量。(2)在果实的整个发育期,叶片和果柄的酸性转化酶(AI)活性均远高于中性转化酶(NI),AI在前期升高后变化较平稳,而蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性的变化各不相同。(3)SS分解方向酶活性(SSd)对叶片和果柄蔗糖的积累具有重要的调节作用。研究认为,蔗糖合成酶分解方向酶活性(SSd)对灵武长枣叶片和果柄蔗糖的积累起主要的调控作用。  相似文献   

17.
In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.  相似文献   

18.
Two isoforms (SS I and SS II) of sucrose synthase (SS; EC 2.54.1.13) were purified from Japanese pear fruit and their properties were compared. SS I mainly appeared in young fruit and SS II mainly in mature fruit. SS I and SS II were purified to the specific activity of 3.37 and 4.26 (units (mg protein)(-1)), respectively. The MW of native and subunit proteins of SS I and SS II were almost the same and both SSs seemed to be a tetramer composed of an 83 kDa polypeptide. However, the ionic charges of the native proteins and the kinetic parameters of SSs were different. Specifically, the Km value for UDP-glucose in SS I was the same as that for UDP, while the Km value for UDP-glucose in SS II was less than that for UDP. SS II easily reacted for sucrose synthesis than sucrose cleavage compared with SS I. Therefore, it is considered that SS I and SS II play different roles in the utilization of carbohydrate in young and mature fruit, respectively.  相似文献   

19.
Sucrose synthase (EC 2.4.1.13) activity in young growing leaves was highest in the leaf base in eggplants ( Solanum melongena L.), cassava ( Manihot esculenta Crantz), grapevine ( Vitis vinifera L.), and in the leaf sheath of sugar cane ( Saccharum of ficinarum L.) and maize ( Zea mays L.). In addition, increasing sucrose synthase activity was measured towards the edge of growing eggplant leaves while the activity in mature leaves was highest in the midrib. The activity of acid and alkaline invertase was very low in the midrib but higher in the blade of fully expanded eggplant leaves. Highest invertase activities were found in younger growing leaves. It was concluded that in growing leaves a close relationship might exist between the activity of sucrose synthase and the import of sucrose from source leaves.
Detachment of mature eggplant leaves led to a 2- to 3-fold increase of sucrose synthase activity in blade and midrib of these leaves. In contrast, invertase activity decreased after detachment in both leaf blade and midrib. It was concluded that the rise in sucrose synthase activity might have been caused by the observed increase of sucrose concentration in detached leaves and that sucrose synthase might have an important role in the regulation of sucrose content of the conducting tissue.  相似文献   

20.
Daughter cladodes (flattened stem segments) of Opuntia ficus-indica (L.) Miller at 14-18 d after appearance on the underlying basal cladodes were sinks, requiring carbohydrate import for growth. Import stopped at 25-36 d, and the daughter cladodes became sources at 27-28 d. The activities of Rubisco, PEPCase, and sucrose-Pi synthase as well as the chlorophyll content at 14 d were not less than those at 28 d, suggesting that photosynthetic or sucrose synthesis capacity was not limiting carbon assimilation for sink cladodes. Sucrose synthase (SS) activity was three times higher than that of alkaline invertase, indicating that SS is the major enzyme for cytoplasmic sucrose hydrolysis. The SS activity was correlated with cladode growth, the highest activity coinciding with the highest growth rate. The sink-to-source transition for daughter cladodes was correlated with increases in malate and H+ concentrations in the vacuoles of chlorenchyma cells, with 5-fold higher nocturnal malate production and 10-fold higher H+ concentration in 28- than in 14-d-old daughter cladodes. The vacuolar H+ increase during cladode development would lower cytoplasmic pH, which may trigger metabolic events affecting the sink-to-source transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号