首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of the 240 amino acids and the position of the five S-S bridges of subunit III of the bovine pancreatic 6 S procarboxypeptidase A complex have been determined thus confirming its phylogenetic filiation with the pancreatic serine endopeptidase group. The subunit contains at equivalent positions all the elements of the catalytic site of these enzymes. The elements of a binding pocket very similar to that of porcine elastase I are also present in the protein thus accounting for its zymogen-like activity. The most obvious difference is the absence in the subunit of the two strongly hydrophobic amino acids (16 and 17 in the chymotrypsinogen numbering), which are known to participate in the stabilization of a fully functional binding pocket in active endopeptidases. Four of the five disulfide bridges of subunit III are homologous with those common to all pancreatic endopeptidases. In contrast the fifth bridge forms a very small loop of only four amino acids, which is not encountered in active endopeptidases. Other potentially lethal modifications in the structure of the subunit are not excluded.  相似文献   

2.
A spectrofluorimetric investigation of the interactions between the subunits of the pancreatic bovine procarboxypeptidase A ternary complex was carried out after covalent insertion of a fluorescent probe at the active center of one of the constituent subunits. The specific insertion of an anthraniloyl group at the active center of subunit II free or bound to subunit I, after its conversion into chymotrypsin II, allowed us to determine the value of the dissociation constant between subunit I and anthraniloyl-chymotrypsin II (Kd = 0.7 +/- 0.1 x 10(-7) M) and between subunit III and the binary complex subunit I-anthraniloyl-chymotrypsin II (Kd = 1.6 +/- 0.3 x 10(-7) M). Moreover, the influence of the association on the flexibility of the active center of chymotrypsin II was deduced from fluorescence polarization measurements and rotational correlation time determination of anthraniloyl-chymotrypsin II free or bound to subunit I. The anthraniloyl group has no motion independently of the whole chymotrypsin II molecule and the binding of subunit I to anthraniloyl-chymotrypsin II results in an increase of the rigidity of the active site in the latter protein.  相似文献   

3.
Extracts of bovine pancreatic tissue are shown by HPLC to contain two distinct ternary complexes of procarboxypeptidase A (subunit I), chymotrypsinogen C (subunit II) and either proproteinase E or subunit III. It is shown that proproteinase E in the complex generates subunit III by removal of 13 N-terminal residues when the former is allowed to autolyze in solution or when catalytic amounts of isolated active proteinase E are added to it. Autolysis of proproteinase E was accompanied by the loss of potential activity towards specific synthetic substrates and occurred at a higher rate in pancreatic juice than in pancreatic tissue extracts, even when both were processed in the presence of serine protease inhibitors. We conclude that subunit III (also called truncated protease E) is an autolytic product of proproteinase E and not an ab initio component of the native ternary complex.  相似文献   

4.
Reversible condensation of the ternary complex form of bovine pancreatic procarboxypeptidase A with 2,3-dimethyl maleic anhydride was investigated at pH 9.0 and low concentration of reagent over the acylable amino groups. After subsequent modification of only a few lysyl residues, subunit III was found to have been released from the quaternary structure leading to the separation of an apparently native protein devoid of any contaminating subunit II, while dissociation of the remaining binary complex occurred upon further addition of the anhydride. This observation suggests that the electrostatic interactions existing between subunits I and III are more rapidly weakened than those between subunits I and II, probably because fewer lysyl residues are involved and/or there is greater accessibility to the chemical reagant. Although completely inactive on the specific substrates of trypsin, chymotrypsin and elastase, subunit III hydrolyzed p-nitrophenyl acetate at a rate similar to that of chymotrypsin but without any burst of p-nitrophenol, which indicates that the weakly functional active site of the subunit is not quite comparable to that of serine protease zymogens. Subunit III already has some of the functional characteristics of the corresponding active enzymes.  相似文献   

5.
C Chapus  A Puigserver  B Kerfélec 《Biochimie》1988,70(9):1143-1151
Up to now, a non-covalent ternary complex in which the pro-carboxypeptidase A (subunit I) is associated to two functionally different proteins (subunits II and III) has only been found in the pancreas of ruminant species. In the other species studied so far, the pro-carboxypeptidase A is secreted either as a monomer or as a binary association with a functionally different protein. Subunit I is the immediate precursor of carboxypeptidase A. Subunit II is a chymotrypsinogen of the C-type, involved, like subunit I, in the degradation of proteins and peptides. Although closely related to the pancreatic serine endopeptidases, subunit III appears to be devoid of any specific enzymatic activity. Information about the spatial organization of the subunits in the ternary complex has been deduced from the sequential dissociation of the complex. In contrast to the mechanism of activation of subunits I and II, which is independent of their aggregation state, the catalytic properties of the resulting enzymes are sensitive to their aggregation state. Moreover, the structural basis of inactivity of subunit III as well as the physiological role of the ternary complex are also discussed in this review.  相似文献   

6.
Subunit III (BSIII) of the bovine ternary complex of procarboxypeptidase A-S6 (PCPA-S6), a defective serine endopeptidase-like protein, actively synthesized by the pancreas of some ruminant species, is highly homologous to human protease E (HPE). Both proteins possess the same atypical disulfide bridge in position 98-99b. They are structurally related to porcine elastase 1 and human elastase 2 (about 56% identity). However, in contrast to those two enzymes which have an overall positive net charge, BSIII and HPE are negatively charged. Three-dimensional models of BSIII and HPE have been constructed from the crystallographic structure of porcine pancreatic elastase 1. The inhibitor-binding site for TFAI in these three proteins seems to be very similar; the atypical disulfide bridge does not seem to be involved in this binding site. The specific structural features of BSIII and HPE strongly support the assumption that BSIII is a truncated protease E and that both proteins belong to a separate serine endopeptidase family.  相似文献   

7.
The existence of procarboxypeptidase A, in the form of a non-covalent ternary complex containing the apparently inactive serine protease (subunit III), has so far been observed only in the ox pancreas. Evidence, obtained in the present study, shows that a ternary complex of procarboxypeptidase A, with a subunit III highly homologous with that of the bovine complex, is also present in two other ruminant species, sheep and goat. The biological significance of these complex forms of procarboxypeptidase A and the consistently high biosynthesis level of the apparently inactive subunit III in all three ruminant species is still unknown. Yet the synthesis of subunit III is not related to the animal diet since in the horse, which is a non-ruminant herbivorous animal, the procarboxypeptidase A is monomeric. Reassociation assays between either bovine subunits II or III and monomeric as well as binary forms of procarboxypeptidase A from various species show that, unlike subunit II, the recognition site for subunit III is highly conserved in all the procarboxypeptidases A and that bovine subunit II is different from porcine chymotrypsinogen C with regard to association.  相似文献   

8.
Reconstitution of bovine procarboxypeptidase A-S6 from the free subunits   总被引:4,自引:0,他引:4  
A Puigserver  P Desnuelle 《Biochemistry》1977,16(11):2497-2501
The three subunits I, II, and III of bovine procarboxypeptidase A separated by reversible dimethylmaleylation can reassociate to form the reconstituted complexes I + II, I + III, and I + II + III. Since the association II + III is not possible, subunit I appears to play a central role in the formation of the complex. It is suggested that subunit I possesses two independent and specific sites for the recognition of subunits II and III. The liberation of subunit I from any of the complexes was observed to increase its activability, although to a lesser extent than predicted by assays carried out with the succinylated protein. By contrast, the bound form of subunit II was activated faster than the free form. The potential activity of the bound form and the activity of the preformed endopentidase were also higher, suggesting a conformational change induced by association. This suggestion was fully supported by the observed modifications of the heat stability and intrinsic fluorescence spectrum of the subunit resulting form association.  相似文献   

9.
Bovine pancreatic procarboxypeptidase A is secreted as a non-covalent association of three different proteins (pro CPA-S6). The free native subunits can be obtained by dissociation of the complex by dimethylmaleylation. Moreover, two specific binary complexes resulting from the high affinity of procarboxypeptidase A (subunit I) for its other two partners (subunits II and III) can also be obtained.In order to better understand the function of the association, an investigation of the morphology of the ternary complex by solution X-ray scattering has been carried out. The radii of gyration of all the molecular species have been obtained and the experimental results have been interpreted in terms of compact objects of simple shape. The various components correspond to globular particles as shown by the value of the ratio Rg/M1/3. This is confirmed by the moderate anisotropy of the simple geometric shapes determined using an assumed value of 0.3 g H2O/g protein for the hydration. The distances between the centres of gravity of pairs of species strongly suggest that the components are in the closest distance configuration or close to it. However, the binary complex I–III appears to be more open than the complex I–II. Finally, a model of the interaction between carboxpeptidase A and its activation peptide has been constructed by comparing the hypothetical geometric model of subunit I to the crystallographically determined structure of carboxypeptidase A.Abbreviations pro CPA procarboxypeptidase A - pro CPA-S6 (or T.C.) ternary complex with a sedimentation coefficient of 6S - CPA carboxypeptidase A  相似文献   

10.
Tryptic treatment of human and porcine proproteinase E, procarboxypeptidase A binary complexes gave rise to active proteinase E after removal of an 11-residue N-terminal activation peptide. By contrast, upon treatment of either complex with active proteinase E, not only was the activation peptide released but also the hydrophobic dipeptide Val12-Val13 of the corresponding enzyme. No serine protease activity on specific synthetic peptide substrates could be detected. The structural homology of inactive proteinase E with subunit III of ruminant procarboxypeptidase A was strengthened by the existence of a functional homology since truncated proteinase E still possessed a weakly functional active site. Thus, subunit III-like proteins are generated by proteinase E-catalyzed limited proteolysis of proproteinase E.  相似文献   

11.
Four glycoproteins were separated by SDS-polyacrylamide gel electrophoresis of proteins of human pancreatic juice devoid of free proteolytic activity. The two low molecular weight glycoproteins were isolated and characterized. Protein P19, the precursor family of protein X, was analyzed by its carbohydrate content which seemed to play an important role in protein solubility at pH 8.0. Protein P35 was found to be a Con A-binding protein rich in mannose. Its N-terminal amino acid sequence covering 33 residues revealed a strong homology with human protease E without the dipeptide Val-Val. Is P35 a protein homologous to the subunit III of bovine procarboxypeptidase A?  相似文献   

12.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

13.
《FEBS letters》1989,250(2):166-170
The characterization, in human pancreatic juice, of a binary complex associating procarboxypeptidase A with a 32 kDa inactive glycoprotein (G32) is reported in this paper. Free G32 was isolated after dissociation of the binary complex. N-terminal sequence analysis revealed a complete homology between this protein and human protease E (HPE 1), except for the two strongly hydrophobic N-terminal residues (Val-Val) which are missing in G32. This protein might be a truncated protease E highly analogous to the subunit III of the ruminant procarboxypeptidase A-S6 ternary complex. The analogy with bovine subunit III is further supported by interspecies reassociation experiments showing that bovine procarboxypeptidase A can specifically bind human G32.  相似文献   

14.
Subunit III, a defective serine endopeptidase lacking the typical N-terminal hydrophobic dipeptide is secreted by the pancreas of ruminant species as part of the bovine ternary complex procarboxypeptidase A-S6. Two monoclinic crystal forms were obtained and subsequently used to solve its X-ray structure. The highest resolution model of subunit III was refined at 1.7 A resolution to a crystallographic R-factor of 18.4%, with r.m.s. bond deviations from ideality of 0.012 A. About 80% of the model presents the characteristic architecture of trypsin-like proteases. The remaining zones, however, have well-defined, unique conformations. The regions from residues 70 to 80 and from 140 to 155 present maximum distances of 16 and 18 A relative to serine proteases and zymogens. Comparisons with the structures of porcine elastase 1 and chymotrypsinogen A indicate that the specific binding pocket of subunit III adopts a zymogen-like conformation and thus provide a basis for its inactivity. In general, the structural analysis of subunit III strongly suggests that it corresponds to a truncated version of a new class of highly structured elastase-like zymogen molecules. Based on the structures of subunit III and elastase 1, it is concluded that large concerted movements are necessary for the activation of zymogen E.  相似文献   

15.
Using the Tb3+ luminescence technique, we showed that bovine subunit III, a defective pancreatic serine endopeptidase-like protease, possessed a single metal ion binding site able to bind Tb3+ with a high affinity comparable to that of porcine elastase. The topology of the metal ion binding site in subunit III is predicted from sequence homologies and modeling experiments based on the known crystallographic three-dimensional structures of the equivalent sites in porcine elastase 1 and bovine beta-trypsin. Moreover, the Tb3+ luminescence technique in parallel to a 19F NMR investigation, allowed us to measure the binding of a very potent specific inhibitor of porcine elastase (trifluoroacetyl-L-lysyl-alanyl p-trifluoromethylphenylanilide) to bovine subunit III. These results confirm that, although devoid of any specific activity, subunit III might possess a conformation close to that of an active enzyme and further support the analogy between subunit III and an elastase-like family.  相似文献   

16.
The tau subunit dimerizes Escherichia coli DNA polymerase III core through interactions with the alpha subunit. In addition to playing critical roles in the structural organization of the holoenzyme, tau mediates intersubunit communications required for efficient replication fork function. We identified potential structural domains of this multifunctional subunit by limited proteolysis of C-terminal biotin-tagged tau proteins. The cleavage sites of each of eight different proteases were found to be clustered within four regions of the tau subunit. The second susceptible region corresponds to the hinge between domain II and III of the highly homologous delta' subunit, and the third region is near the C-terminal end of the tau-delta' alignment (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). We propose a five-domain structure for the tau protein. Domains I and II are based on the crystallographic structure of delta' by Guenther and colleagues. Domains III-V are based on our protease cleavage results. Using this information, we expressed biotin-tagged tau proteins lacking specific protease-resistant domains and analyzed their binding to the alpha subunit by surface plasmon resonance. Results from these studies indicated that the alpha binding site of tau lies within its C-terminal 147 residues (domain V).  相似文献   

17.
This paper is a continuation of our study of various animal pancreatic enzymes which are related to human pancreatic elastase 1 (Sziegoleit, A. & Linder, D. (1986) Biol. Chem. Hoppe-Seyler, 367, 527-531). The isolation and immunological analysis of the related protein from bovine pancreas disclosed that the third subunit of the procarboxypeptidase A complex is the antibody-binding component. The similarity of this subunit to elastase 1 is affirmed by comparison of their primary structures. While the complete amino-acid sequence of bovine subunit III recently has been published (Venot, N., Sciaky, M., Puigserver, A., Desnuelle, P. & Laurent, G. (1986) Eur. J. Biochem. 157, 91-99), we here present the amino-acid sequence of the carboxy-terminal tryptic peptide of human pancreatic elastase 1 showing a high degree of homology.  相似文献   

18.
Procarboxypeptidase B is converted to enzymatically active carboxypeptidase B by limited proteolysis catalysed by trypsin, removing the long N-terminal activation segment of 95 amino acids. The three-dimensional crystal structure of procarboxypeptidase B from porcine pancreas has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 0.169. The functional determinants of its enzymatic inactivity and of its activation by limited proteolysis have thus been unveiled. The activation segment folds in a globular region with an open sandwich antiparallel-alpha antiparallel-beta topology and in a C terminal alpha-helix which connects it to the enzyme moiety. The globular region (A7-A82) shields the preformed active site, and establishes specific interactions with residues important for substrate recognition. AspA41 forms a salt bridge with Arg145, which in active carboxypeptidase binds the C-terminal carboxyl group of substrate molecules. The connecting region occupies the putative extended substrate binding site. The scissile peptide bond cleaved by trypsin during activation is very exposed. Its cleavage leads to the release of the activation segment and to exposure of the substrate binding site. An open-sandwich folding has been observed in a number of other proteins and protein domains. One of them is the C-terminal fragment of L7/L12, a ribosomal protein from Escherichia coli that displays a topology similar to the activation domain of procarboxypeptidase.  相似文献   

19.
The proteolytic processing of pancreatic procarboxypeptidase B to a mature and functional enzyme is much faster than that of procarboxypeptidase A1. This different behavior has been proposed to depend on specific conformational features at the region that connects the globular domain of the pro-segment to the enzyme and at the contacting surfaces on both moieties. A cDNA coding for porcine procarboxypeptidase B was cloned, sequenced, and expressed at high yield (250 mg/liter) in the methylotrophic yeast Pichia pastoris. To test the previous hypothesis, different mutants of the pro-segment at the putative tryptic targets in its connecting region and at some of the residues contacting the active enzyme were obtained. Moreover, the complete connecting region was replaced by the homologous sequence in procarboxypeptidase A1. The detailed study of the tryptic processing of the mutants shows that limited proteolysis of procarboxypeptidase B is a very specific process, as Arg-95 is the only residue accessible to tryptic attack in the proenzyme. A fast destabilization of the connecting region after the first tryptic cut allows subsequent proteolytic processing and the expression of carboxypeptidase B activity. Although all pancreatic procarboxypeptidases have a preformed active site, only the A forms show intrinsic activity. Mutational substitution of Asp-41 in the globular activation domain, located at the interface with the enzyme moiety, as well as removal of the adjacent 310 helix allow the appearance of residual activity in the mutated procarboxypeptidase B, indicating that the interaction of both structural elements with the enzyme moiety prevents the binding of substrates and promotes enzyme inhibition. In addition, the poor heterologous expression of such mutants indicates that the mutated region is important for the folding of the whole proenzyme.  相似文献   

20.
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号