首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net sodium influx under K-free conditions was independent of the intracellular sodium ion concentration, [Na]i, and was increased by ouabain. Unidirectional sodium influx was the sum of a component independent of [Na]i and a component that increased linearly with increasing [Na]i. Net influx of sodium ions in K-free solutions varied with the external sodium ion concentration, [Na]o, and a steady-state balance of the sodium ion fluxes occurred at [Na]o = 40 mM. When solutions were K-free and contained 10-4 M ouabain, net sodium influx varied linearly with [Na]o and a steady state for the intracellular sodium was observed at [Na]o = 13 mM. The steady state observed in the presence of ouabain was the result of a pump-leak balance as the external sodium ion concentration with which the muscle sodium would be in equilibrium, under these conditions, was 0.11 mM. The rate constant for total potassium loss to K-free Ringer solution was independent of [Na]i but dependent on [Na]o. Replacing external NaCl with MgCl2 brought about reductions in net potassium efflux. Ouabain was without effect on net potassium efflux in K-free Ringer solution with [Na]o = 120 mM, but increased potassium efflux in a medium with NaCl replaced by MgCl2. When muscles were enriched with sodium ions, potassium efflux into K-free, Mg++-substituted Ringer solution fell to around 0.1 pmol/cm2·s and was increased 14-fold by addition of ouabain.  相似文献   

2.
Cellular concentrations, [K]i, [Na]i, and [Cl]i, and cell water contents were measured in vitro at 27°C in cat papillary muscles. Measurements were made with and without ouabain at varying concentrations of K and ouabain, at pH 5.2 and 9.0, in absence of O2, and in NaCl-free solution. Large losses of cell K and increases of cell Na occurred in presence of ouabain, at 2–3°C, and in K-free medium. The dependence of inhibition of cation transport by ouabain on external K concentration, studied at constant initial [K]i, was consistent with a competition between K and ouabain localized to the external face of the membrane. In NaCl-free sucrose solution [K]i remained at its physiological value and was not affected by exposure to ouabain or low temperature, except when Ca was also omitted. Ouabain inhibition persisted at pH 9.0 and in Ca-poor media. Cells swelled and lost K at pH 5.2, and residual ouabain effect was small. At pH 9.0, or in absence of O2, or in Ca-poor solutions cells became permeable to mannitol. The ion movements observed after inhibition of active transport are compatible either with a passive K distribution and a primary inhibition of Na extrusion or with inhibition of a coupled active transport of both K and Na.  相似文献   

3.
Sodium efflux from rings of frog stomach muscle was measured at 5° and 15°C in three different steady states. After incubation in normal, K-free, or ouabain (10-4 M) solutions, intracellular cations stabilized at markedly differing levels. At 5°C, inhibition of Na extrusion was shown in the rate coefficients for 22Na efflux, which were slightly smaller in K-free than in normal solutions, and much smaller in ouabain. Due to the intracellular Na concentration differences, total Na efflux was similar in K-free and ouabain solutions, and only ⅕ as large in normal solution. At 15°C, normal total Na flux was only 1/7;–1/10 inhibitors, and may be underestimated. The total flux differences may involve dependence of the Na pump and Na permeation on internal Na concentration. The Q 10 of the steady-state fluxes was 3.7 in ouabain, 2.8 in K-free solution, and 1.9 in normal solution. The high temperature dependence of influx as well as efflux suggests transport mechanisms other than simple diffusion. Sodium turnover in the cell water was 46–66 mM/hr in inhibitors at 15°C, and a high rate of Na extrusion in normal muscle is suggested. However, cell volume:surface ratio is only 1.6 µ and all estimates of Na flux were under 3 pmoles/cm2 per sec, indicating low Na permeability.  相似文献   

4.
The frog ventricle in sucrose solution contracts for several hours at 25°C, and for as long as 24 hours at 5°G. The possibility that a fraction of the extracellular fluid remains outside of the excitable membrane was examined by measuring the efflux of tracers. The half-time for the efflux to sucrose solution at 25°C of C14 sucrose is about 1 minute, for Na24 is 6.5 minutes, and for Cl86 is 4 minutes. There is no evidence for the retention of an extracellular Na fraction. The Q10 for Na and Cl efflux is about 1.3. The half-time for K42 efflux is about 180 minutes; the Q10 is 1.7. The efflux rates of Na24, Cl36 and K42 to sucrose and to Ringer's solutions are quite similar. Ca45 efflux is only one-fifth as fast to sucrose solution as to Ringer's; the retention of Ca++ may be important for maintaining excitability in sucrose solution. P32 efflux is five times faster to sucrose solution than to Ringer's solution, and there is a similar increase in the rate of inosine loss to sucrose solution. The Q10 for efflux to sucrose solution is 2.2 for P32O4 and 2.4 for inosine. We suggest that energy metabolism is abnormal in ventricles in sucrose solution and that low temperature prolongs excitability by slowing the metabolic change.  相似文献   

5.
W. L. Hardy 《Biophysical journal》1973,13(10):1054-1070
Conduction speed (θ) in single myelinated Rana pipiens sciatic nerve fibers has been precisely measured using intracellular recording and on-line digital computer techniques. The dependence of relative speed on external Na concentration at 15°C has been found to be ln(θ12) = 0.524 (±0.018) ln ([Na+]1/[Na+]2) + 0.003. Thus θ has very close to a square root dependence on [Na+]0 for these fibers. This experimental finding is not in complete agreement with a theoretical prediction based on a solution of the Hodgkin-Huxley (H.H.) equations. The effect of small temperature variations around 15°C on θ has also been measured for Rana fibers in Ringer's solution. θ has close to an exponential dependence on T and a Q10 of 2.95 has been estimated.  相似文献   

6.
Effect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons   总被引:12,自引:9,他引:3       下载免费PDF全文
Dialysis perfusion technique makes it possible to control the internal composition of squid giant axons. Calcium efflux has been studied in the presence and in the virtual absence (<5 µM) of ATP. The mean calcium efflux from axons dialyzed with 0.3 µM ionized calcium, [ATP]i > 1,000 µM, and bathed in artificial seawater (ASW) was 0.24 ± 0.02 pmol·cm-2·s-1 (P/CS) (n = 8) at 22°C. With [ATP]i < 5 µM the mean efflux was 0.11 ± 0.01 P/CS (n = 15). The curve relating calcium efflux to [ATP]i shows a constant residual calcium efflux in the range of 1–100 µM [ATP]i. An increase of the calcium efflux is observed when [ATP]i is >100 µM and saturates at [ATP]i > 1,000 µM. The magnitude of the ATP-dependent fraction of the calcium efflux varies with external concentrations of Na+, Ca++, and Mg++. These results suggest that internal ATP changes the affinity of the calcium transport system for external cations.  相似文献   

7.
Internal chloride activity, ai Cl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. ai Cl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and E Cl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused ai Cl to increase at such a rate that 30–80 min after cooling began, E Cl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused ai Cl to decline, and E Cl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of ai Cl. Upon return to control seawater, ai Cl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec.  相似文献   

8.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

9.
Dynamics of Bacterial Sulfate Reduction in a Eutrophic Lake   总被引:22,自引:13,他引:9       下载免费PDF全文
Bacterial sulfate reduction in the surface sediment and the water column of Lake Mendota, Madison, Wis., was studied by using radioactive sulfate (35SO42−). High rates of sulfate reduction were observed at the sediment surface, where the sulfate pool (0.2 mM SO42−) had a turnover time of 10 to 24 h. Daily sulfate reduction rates in Lake Mendota sediment varied from 50 to 600 nmol of SO42− cm−3, depending on temperature and sampling date. Rates of sulfate reduction in the water column were 103 times lower than that for the surface sediment and, on an areal basis, accounted for less than 18% of the total sulfate reduction in the hypolimnion during summer stratification. Rates of bacterial sulfate reduction in the sediment were not sulfate limited at sulfate concentrations greater than 0.1 mM in short-term experiments. Although sulfate reduction seemed to be sulfate limited below 0.1 mM, Michaelis-Menten kinetics were not observed. The optimum temperature (36 to 37°C) for sulfate reduction in the sediment was considerably higher than in situ temperatures (1 to 13°C). The response of sulfate reduction to the addition of various electron donors metabolized by sulfate-reducing bacteria in pure culture was investigated. The degree of stimulation was in this order: H2 > n-butanol > n-propanol > ethanol > glucose. Acetate and lactate caused no stimulation.  相似文献   

10.
The effect of temperature on the potential and current thresholds of the squid giant axon membrane was measured with gross external electrodes. A central segment of the axon, 0.8 mm long and in sea water, was isolated by flowing low conductance, isoosmotic sucrose solution on each side; both ends were depolarized in isoosmotic KCl. Measured biphasic square wave currents at five cycles per second were applied between one end of the nerve and the membrane of the central segment. The membrane potential was recorded between the central sea water and the other depolarized end. The recorded potentials are developed only across the membrane impedance. Threshold current values ranged from 3.2 µa at 267deg;C to 1 µa at 7.5°C. Threshold potential values ranged from 50 mv at 26°C to 6 mv at 7.5°C. The mean Q10 of threshold current was 2.3 (SD = 0.2), while the Q10 for threshold potentials was 2.0 (SD = 0.1).  相似文献   

11.
Studies on HeLa cells in spinner culture at pH 7.0 and 37° have shown that [Na]i decreased and [K]i increased with increasing [Ca]o. In Na-free (choline) medium [K]i remained high whether or not Ca was present in the medium. [Na]i and [K]i approached a new steady state within 1 min after transfer to Ca-free medium and returned to the initial values within 15 min upon readdition of Ca. 40% of the cell Ca exchanged within 1 min followed by a slow exchange of the remaining Ca over several hours. [Ca]i increased with decreasing [Na]o but was independent of [K]o. Equimolar Mg did not substitute for Ca in maintaining low [Na]i and high [K]i. Under steady-state conditions about 50% of the cell Na exchanged in accordance with a single rate constant. The initial Na influx was 270, 100, and 2.5 µM/liter of cell water/sec for 0, 0.10, and 1.0 mM [Ca]o, respectively. When Na transport was inhibited with strophanthidin and [Na]i and [K]i allowed to reach a steady state, Na influx was more rapid for cells incubated in Ca-free medium than for cells incubated in medium containing 1.0 mM Ca. These results suggest that Ca competes with Na at the cell membrane and thus controls the passive diffusion of Na into the cell.  相似文献   

12.
In environments with temperatures above 60°C, thermophilic prokaryotes are the only metabolically active life-forms. By using the 35SO42- tracer technique, we studied the activity of sulfate-reducing microorganisms (SRM) in hot sediment from a hydrothermal vent site in the northern part of freshwater Lake Tanganyika (East Africa). Incubation of slurry samples at 8 to 90°C demonstrated meso- and thermophilic sulfate reduction with optimum temperatures of 34 to 45°C and 56 to 65°C, respectively, and with an upper temperature limit of 80°C. Sulfate reduction was stimulated at all temperatures by the addition of short-chain fatty acids and benzoate or complex substrates (yeast extract and peptone). A time course experiment showed that linear thermophilic sulfate consumption occurred after a lag phase (12 h) and indicated the presence of a large population of SRM in the hydrothermal sediment. Thermophilic sulfate reduction had a pH optimum of about 7 and was completely inhibited at pH 8.8 to 9.2. SRM could be enriched from hydrothermal chimney and sediment samples at 60 and 75°C. In lactate-grown enrichments, sulfide production occurred at up to 70 and 75°C, with optima at 63 and 71°C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit of 80°C.  相似文献   

13.
The cells of cat right ventricular papillary muscles were depleted of K and caused to accumulate Na and water by preincubation at 2–3°C. The time courses of changes in cellular ion content and volume and of the resting membrane potential (Vm) were then followed after abrupt rewarming to 27–28°C. At physiological external K concentration ([K]o = 5.32 mM) recovery of cellular ion and water contents was complete within 30 minutes, the maximal observable rates of K uptake and Na extrusion (Δmmol cell ion/(kg dry weight) (min.)) being 3.4 and 3.6, respectively. The recovery rate was markedly slowed at [K]o = 1.0 mM. Rewarming caused Vm measured in cells at the muscle surface to recover within from <1 to 9 minutes, but only slight restoration of cellular ion contents (measured in whole muscles) had occurred after 10 minutes. Studies of recovery in NaCl-free sucrose Ringer''s solution made it possible to separate the ouabain-insensitive outward diffusion of Na as a salt from a simultaneous ouabain-sensitive Na extrusion which is associated with a net cellular K uptake. A hypothesis consistent with these observations is that rewarming may activate a ouabain-sensitive "electrogenic" mechanism, most probably the net active transport of Na out of the cell, from which net K uptake may then follow passively.  相似文献   

14.
The sulfate kinetics in an anaerobic, sulfate-reducing biofilm were investigated with an annular biofilm reactor. Biofilm growth, sulfide production, and kinetic constants (Km and Vmax) for the bacterial sulfate uptake within the biofilm were determined. These parameters were used to model the biofilm kinetics, and the experimental results were in good agreement with the model predictions. Typical zero-order volume rate constants for sulfate reduction in a biofilm without substrate limitation ranged from 56 to 93 μmol of SO24-cm−3 h−1 at 20°C. The temperature dependence (Q10) of sulfate reduction was equivalent to 3.4 at between 9 and 20°C. The measured rates of sulfate reduction could explain the relatively high sulfide levels found in sewers and wastewater treatment systems. Furthermore, it has been shown that sulfate reduction in biofilms just a few hundred micrometers thick is limited by sulfate diffusion into biofilm at concentrations below 0.5 mM. This observation might, in some cases, be an explanation for the relatively poor capacity of the sulfate-reducing bacteria to compete with the methanogenic bacteria in anaerobic wastewater treatment in submerged filters.  相似文献   

15.
Membrane potentials were recorded in isolated segments of interscapular brown adipose tissue from rats. After equilibration at 29°C in Krebs-Ringer bicarbonate buffer a mean value of -51 ± 4 mv (SD) was found. This level could be maintained for up to 5 hr. The mean effective membrane resistance was 1.35 ± 0.45 megohm. The membrane potential was a function of the extracellular potassium concentration. Ouabain (10-6-10-3 M) and incubation in K-free buffer produced progressive depolarization. Epinephrine and norepinephrine in concentrations as low as 10-8 g/ml produced a prompt depolarization. Cooling of the tissue and lowering of the oxygen tension caused a marked and reversible decrease in the membrane potential. In tissue obtained from cold-adapted rats, the membrane potential was considerably diminished. 6Assuming that the membrane potential is some function of the Na permeability of the plasma membrane it is suggested that an increase in the rate of active Na-K transport and ensuing ADP formation might contribute to the increase in respiration seen during exposure to thermogenic stimuli.  相似文献   

16.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

17.
The influence of several ions on the membrane potential of the somatic muscle of Ascaris has been investigated by changing their concentration in the surrounding solution. When [K]o is increased at the expense of [Na]o leaving [Cl]o constant, the membrane potential is first seen to increase. [K]o higher than 45 mM reduces the membrane potential with a slope of 23 mv for a tenfold change in [K]o. However, when [K]o is increased keeping [Na]o and [Cl]o low and constant, the line relating the membrane potential with log [K]o has a slope of almost 50 mv. If [Cl]o is reduced in the absence of external Na, after the [K]o is increased to 45 mM, the membrane potential decreases with a slope of 59 mv per tenfold change in [Cl]o in close agreement with the Nernst equation. If Cl- is replaced by SO4 2-, a depolarization is produced, while chloride replacement by NO3 -, Br-, and I- results in a hyperpolarization of the membrane. Removal of the external Na+ ions increases the average membrane potential by 17 mv.  相似文献   

18.
Isolated urinary bladders of the bullfrog (R. catesbeiana) and the toad (B. marinus) were mounted in an Ussing chamber. Potential differences up to 114 mv were observed in bullfrog bladder when the mucosal surface was bathed in dilute Na2SO4 and the serosal surface in sulfate Ringer's. In experiments with bullfrogs, K was used to replace Na in the mucosal solution and Na was used for K in the serosal solutions. The selectivity was judged in terms of the relative effectiveness of the replacement cation in maintaining the bladder potential. In experiments with toads, K and Rb were equally poor replacements for Na at the mucosal border, while Rb was a good replacement for K at the serosal border. Li in the mucosal solution appeared to depress the potential in part irreversibly. At the serosal border, Li was a partially effective substitute for K, more so than was Na. However, both were poor replacements compared to Rb. The mucosal surface of the urinary bladder of both frog and toad appears to be Na-selective and the serosal surface appears to be K-selective, consistent with the Koefoed-Johnsen-Ussing model for frog skin.  相似文献   

19.
Calcium Efflux from Internally Dialyzed Squid Giant Axons   总被引:12,自引:10,他引:2       下载免费PDF全文
Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources.  相似文献   

20.
S H White 《Biophysical journal》1970,10(12):1127-1148
A method is described for measuring the specific capacitance (Cm) of lipid bilayer membranes with an estimated experimental error of only 1%. The gross capacitance was measured with an AC Wheatstone bridge and a photographic technique was used to determine the area of thin membrane. The results of measurements on oxidized cholesterol-decane membranes formed in 1 × 10-2 M KCl show that Cm depends upon temperature, voltage, time, and the age of the bulk membrane solutions. For a freshly thinned membrane (from 5 week old solution), Cm increases exponentially from an initial value of 0.432 ±0.021 (SD) μF/cm2 with a time constant of ~15 min. A 100 mv potential applied across the membrane for 10-20 min prior to making measurements eliminated this time dependence and produced final-state membranes. Cm of final-state membranes depends upon applied voltage (Va) and obeys the equation Cm = C0 + βVa2 where Va VDC + VrmsAC. C0 and β depend upon temperature; C0 decreases linearly with temperature while β increases linearly. At 20°C, C0 = 0.559 ±0.01 (SD) μF/cm2 and β = 0.0123 ±0.0036 (SD) (μF/cm2)/(mv2) and at 34°C, C0 = 0.472 ±0.01 and β = 0.0382 ±0.0039. These variations in Cm are interpreted as resulting from thickness changes. The possibility that they result from diffuse layer and/or membrane dielectric phenomena is discussed and found to be unlikely. The results are discussed in terms of membrane stability by constructing hypothetical potential energy vs. thickness curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号