共查询到20条相似文献,搜索用时 15 毫秒
1.
A central goal of ecosystem ecology is to understand how the cycling of nutrients and the growth of organisms are linked. Ecologists have repeatedly observed that nutrient mineralization and plant production are closely coupled in time in many terrestrial ecosystems. Typically, mineralization rates of limiting nutrients, particularly of nitrogen, during the growing season determine nutrient availability while pools of mineral nutrients remain low and relatively constant. Although several previous reports suggest nitrogen mineralization has the potential to vary seasonally and out of phase with plant production, such a phenomenon has been poorly documented. Here we report results from a semiarid savanna ecosystem characterized by distinct temporal asynchrony in rates of soil nitrogen cycling and plant production. Periods of positive plant growth following the onset of rains coincide with periods of low N turnover rates, whereas higher rates occur late in the wet season following plant senescence and throughout dry seasons. Plant uptake from the substantial mineral N pool present early in the growing season is sufficient to explain most of the N allocation to aboveground plant biomass during the growing season, even in the absence of any wet-season mineralization. The mineral N pool is subsequently recharged by late wet- and dry-season mineralization, plus urine inputs at sites with high levels of ungulate activity. These findings suggest fundamental changes in the quality of substrates available to decomposers over a seasonal cycle, with significant implications for the partitioning of limiting nutrients by plant species, the seasonal pattern of nutrient limitations of aboveground production, and the effective use of N fertilizers in semiarid ecosystems. 相似文献
2.
The quantities and spatial distribution of nutrients in savanna ecosystems are affected by many factors, of which fire, herbivory
and symbiotic N2-fixation are particularly important. We measured soil nitrogen (N) pools and the relative abundance of N and phosphorus (P)
in herbaceous vegetation in five vegetation types in a humid savanna in Tanzania. We also performed a factorial fertilization
experiment to investigate which nutrients most limit herbaceous production. N pools in the top 10 cm of soil were low at sites
where fires were frequent, and higher in areas with woody legume encroachment, or high herbivore excretion. Biomass production
was co-limited by N and P at sites that were frequently burnt or heavily grazed by native herbivores. In contrast, aboveground
production was limited by N in areas receiving large amounts of excreta from livestock. N2-fixation by woody legumes did not lead to P-limitation, but did increase the availability of N relative to P. We conclude
that the effects of fire, herbivory and N2-fixation upon soil N pools and N:P-stoichiometry in savanna ecosystems are, to a large extent, predictable.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Author Contributions P.C., H.O.V. and P.E. designed the study and wrote the paper. P.C. and T.K. performed the research and analyzed the data. 相似文献
3.
Prescribed fire has become a common tool of natural area managers for removal of non‐indigenous invasive species and maintenance of barrens plant communities. Certain non‐native species, such as tall fescue (Festuca arundinacea), tolerate fire and may require additional removal treatments. We studied changes in soil N and C dynamics after prescribed fire and herbicide application in remnant barrens in west central Kentucky. The effects of a single spring burn post‐emergence herbicide, combined fire and herbicide treatments, and an unburned no‐herbicide control were compared on five replicate blocks. In fire‐plus‐herbicide plots, fescue averaged 8% at the end of the growing season compared with 46% fescue cover in control plots. The extent of bare soil increased from near 0 in control to 11% in burned plots and 25% in fire‐plus‐herbicide plots. Over the course of the growing season, fire had little effect on soil N pools or processes. Fire caused a decline in soil CO2 flux in parallel to decreased soil moisture. When applied alone, herbicide increased plant‐available soil N slightly but had no effect on soil respiration, moisture, or temperature. Fire‐plus‐herbicide significantly increased plant‐available soil N and net N transformation rates; soil respiration declined by 33%. Removal of non‐native plants modified the chemical, physical, and biological soil conditions that control availability of plant nutrients and influence plant species performance and community composition. 相似文献
4.
We investigated the linkages between leaf litter quality and decomposability in a savanna plant community dominated by palatable-spinescent
tree species. We measured: (1) leaf litter decomposability across five woody species that differ in leaf chemistry; (2) mass
decomposition, nitrogen (N); and carbon (C) dynamics in leaf litter of a staple browse species (Acacia nigrescens) as well as (3) variation in litter composition across six sites that experienced very different histories of attack from
large herbivores. All decomposition trials included litter bags filled with chopped straw to control for variation in site
effects. We found a positive relationship between litter quality and decomposability, but we also found that Acacia and straw litter mass remaining did not significantly vary between heavily and lightly browsed sites. This is despite the
fact that both the quality and composition of litter returned to the soil were significantly different across sites. We observed
greater N resorption from senescing Acacia leaves at heavily browsed sites, which in turn contributed to increase the C:N ratio of leaf litter and caused greater litter
N immobilization over time. This, together with the significantly lower tree- and herb-leaf litter mass beneath heavily browsed
trees, should negatively affect decomposition rates. However, estimated dung and urine N deposition from both browsers and
grazers was significantly greater at high- than at low-herbivory sites. We hypothesize that N inputs from dung and urine boost
litter N mineralization and decomposition (especially following seasonal rainfall events), and thereby offset the effects
of poor leaf litter quality at chronically browsed sites.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
5.
人工桤柏混交林中降雨对养分物质的淋溶影响 总被引:16,自引:1,他引:16
引 言水体养分物的循环是生态系统生物地球化学循环的一个重要组成部分,因此,从生态角度来研究森林的存在对流域的水分循环和物质迁移的影响将是一个十分有意义的工作。目前,欧美各国关于森林与水质的关系研究比较多[5]。我国较多研究森林对河流泥沙悬浮含量影响,或干枝落叶和微生物对腐殖质转化等作用形成的森林养分循环,而较少研究森林降雨重新分配作用对森林养分循环的影响[1,2],因此,本文选择了亚热带人工桤柏混交林,通过观测降雨过程中林外降雨、林内降雨、树干流及其相应水质的变化,结合林外降雨、林内降雨和树干流的时空变化特性,分… 相似文献
6.
Restoring native plant communities on sites formerly occupied by invasive nitrogen‐fixing species poses unique problems due to elevated soil nitrogen availability. Mitigation practices that reduce available nitrogen may ameliorate this problem. We evaluated the effects of tree removal followed by soil preparation or mulching on native plant growth and soil nitrogen transformations in a pine–oak system formerly occupied by exotic nitrogen‐fixing Black locust (Robinia pseudoacacia) trees. Greenhouse growth experiments with native grasses, Andropogon gerardii and Sorghastrum nutans, showed elevated relative growth rates in soils from Black locust compared with pine–oak stands. Field soil nutrient concentrations and rates of net nitrification and total net N‐mineralization were compared 2 and 4 years since Black locust removal and in control sites. Although soil nitrogen concentrations and total net N‐mineralization rates in the restored sites were reduced to levels that were similar to paired pine–oak stands after only 2 years, net nitrification rates remained 3–34 times higher in the restored sites. Other nutrient ion concentrations (Ca, Mg) and organic matter content were reduced, whereas phosphorus levels remained elevated in restored sites. Thus, 2–4 years following Black locust tree removal and soil horizon mixing achieved through site preparation, the concentrations of many soil nutrients returned to preinvasion levels. However, net nitrification rates remained elevated; cover cropping or carbon addition during restoration of sites invaded by nitrogen fixers could increase nitrogen immobilization and/or reduce nitrate availability, making sites more amenable to native plant establishment. 相似文献
7.
8.
一个农牧结合生态系统营养循环的源,库,流 总被引:2,自引:0,他引:2
一个农牧结合生态系统营养循环的源、库、流曾江海,张玉铭(中国科学院石家庄农业现代化研究所050021)Source,PoolandFluxofNutrientCyclinginaCombinedAgro-AnimalHusbandryEcosyste... 相似文献
9.
Revegetation is a traditional practice widely used for soil and water conservation on the Loess Plateau in China. However, there has been a lack of reports on soil microbial–biochemical indices required for a comprehensive evaluation of the success of revegetation systems. In this study, we examined the effects of revegetation on major soil nutrients and microbial–biochemical properties in an artificial alfalfa grassland, an enclosed natural grassland, and an artificial shrubland (Caragana korshinskii), with an abandoned cropland as control. Results showed that at 0–5, 5–20, and 20–40 cm depths, soil organic carbon, alkaline extractable nitrogen and available potassium were higher in natural grassland and artificial shrubland compared with artificial grassland and abandoned cropland. Soil microbial biomass C (Cmic) and phosphorous (Pmic) substantially decreased with depth at all sites, and in abandoned cropland was significantly lower than those of natural grassland, artificial grassland, and artificial shrubland at the depth of 0–5 cm. Soil microbial biomass N (Nmic) was higher in artificial shrubland and abandoned cropland compared with that in natural and artificial grasslands. Both Cmic and Pmic were significantly different between the 23‐year‐old and the 13‐year‐old artificial shrublands at the 0–5 cm depth. The activities of soil invertase, urease, and alkaline phosphatase in natural grassland and artificial shrubland were higher than those in artificial grassland and abandoned cropland. This study demonstrated that the regeneration of both natural grassland and artificial shrubland effectively preserved and enhanced soil microbial biomass and major nutrient cycling, thus is an ecologically beneficial practice for recovery of degraded soils on the Loess Plateau. 相似文献
10.
Unionid mussels are a guild of freshwater, sedentary filter-feeders experiencing a global decline in both species richness and abundance. To predict how these losses may impact stream ecosystems we need to quantify the effects of both overall mussel biomass and individual species on ecosystem processes. In this study we begin addressing these fundamental questions by comparing rates of ecosystem processes for two common mussel species, Amblema plicata and Actinonaias ligamentina, across a range of abundance levels and at two trophic states (low and high productivity) in stream mesocosms. At both low and high productivity, community respiration, water column ammonia, nitrate, and phosphorus concentrations, and algal clearance rates were all linearly related to overall mussel biomass. After removing the effects of biomass with ANCOVA, we found few differences between species. In a separate series of experiments, nutrient excretion (phosphorus, ammonia, and molar N:P) and biodeposition rates were only marginally different between species. For the species studied here, functional effects of unionids in streams were similar between species and linearly related to biomass, indicating the potential for strong effects when overall mussel biomass is high and hydrologic residence times are long. 相似文献
11.
Worldwide, savanna remnants are losing acreage due to species replacement with shade-tolerant midstory forest species as a response to decades of fire suppression. Because canopy closes grasses and other easily ignitable fuels decline, therefore, fire, when reintroduced after years of absence, is not always effective at restoring the open structure original to these communities. Our study sought to determine if managed grazing is an alternative tool for reducing shrub densities and restoring savanna structure without the impacts on soils and native vegetation observed with unmanaged grazing. We compared effects of fire and managed grazing on shrub and herb composition within degraded oak savanna and tallgrass prairie of the U.S. Upper Midwest using a randomized complete block design. The vegetation response to treatments differed by species and by vegetation type. Total shrub stem densities declined 44% in grazed and 68% in burned paddocks within savanna and by 33% for both treatments within prairie. Within savanna, cattle reduced stem densities of Rubus spp. 97%, whereas fire reduced Ribes missouriense stems 96%. Both fire and grazing were effective at reducing stem numbers for several other shrub species but not to the same degree. Native forbs were suppressed in grazed savanna paddocks, as were native grasses in grazed prairie paddocks along with a minor increase of exotic forbs. We did not observe changes in soil bulk density. We conclude that managed grazing can serve as a valuable supplement but not as a replacement to fire for controlling shrubs in these systems. 相似文献
12.
在高山苔原冬季积雪覆盖的群落生长季短, 但明显比周围群落生长茂盛。为了说明雪斑地段群落生长机理, 对长白山苔原雪斑土壤氮素动态以及大白花地榆(Sanguisorba sitchensis)群落生产力进行了连续测定。雪斑群落土壤冬季相对温暖, 最低日平均温度-1.4 ℃, 裸露地段-16.9 ℃, 全年水分条件充足; 积雪期凋落物分解和氮矿化均在进行, 土壤具有很高的氮素含量及矿化速率。大白花地榆地上部分净初级生产力为4 046 kg·hm-2·a-1。正是独特的水热条件和养分条件, 以及具有很大的叶面积同化器官, 高山苔原雪斑地段的大白花地榆群落才得以维持生存并表现出很高的生产力水平。 相似文献
13.
人类活动和气候变化对陆地生态系统结构和功能的影响日益明显。在中国半干旱草原区,植物功能性状对这些变化的响应机制仍不是很清楚。以科尔沁沙质草地植物群落功能性状(CWMtrait)、一年生和多年生植物平均功能性状为研究对象,开展非生长季放牧、增水、氮添加及其耦合效应的模拟控制试验,于2016年8月中旬在沙质草地开展了植物功能性状的调查及测定,主要包括植物高度、比叶面积(specific leaf area,SLA)、叶片干物质含量(leaf dry matter content,LDMC)、叶片氮含量(leaf nitrogen content,LNC)和叶片碳同位素(leaf carbon isotopes,δ13C)。结果表明:氮添加显著提高了CWMheight和CWMLNC(P<0.05),降低了CWMLDMC(P<0.05),同时放牧和增水的耦合效应对CWMSLA具有显著影响(P<0.05);放牧显著降低了一年生植物的平均高度(P<0.05),氮添加显著提高了一年生植物的平均高度、LNC和δ13C (P<0.05);氮添加显著提高了多年生植物的平均SLA、LNC和δ13C (P<0.05),同时放牧和增水的耦合效应对多年生植物的平均SLA和LDMC具有显著影响(P<0.05)。主成分分析表明,放牧促进了植物群落和多年生植物SLA与LDMC、LNC和δ13C之间的负相关关系,增水促进了植物群落和多年生植物高度与SLA之间的正相关关系以及LDMC、LNC和δ13C之间的正相关关系,说明多年生植物在调控沙质草地植物群落响应外界干扰时具有较强的主导性作用。非生长季放牧、生长季禁牧有利于沙质草地的可持续发展和管理,增水能够减缓放牧压力对于草地植物的影响,氮添加有利于植物同化δ13C,并提高植物叶片的水分利用效率。 相似文献
14.
Effects of upstream lakes and nutrient limitation on periphytic biomass and nitrogen fixation in oligotrophic, subalpine streams 总被引:1,自引:0,他引:1
1. We conducted bioassays of nutrient limitation to understand how macronutrients and the position of streams relative to lakes control nitrogen (N2) fixation and periphytic biomass in three oligotrophic Rocky Mountain catchments. We measured periphytic chlorophyll‐a (chl‐a) and nitrogen‐fixation responses to nitrogen (N) and phosphorus (P) additions using nutrient‐diffusing substrata at 19 stream study sites, located above and below lakes within the study catchments. 2. We found that periphytic chl‐a was significantly co‐limited by N and P at 13 of the 19 sites, with sole limitation by P observed at another four sites, and no nutrient response at the final two sites. On average, the addition of N, P and N + P stimulated chl‐a 35%, 114% and 700% above control values respectively. The addition of P alone stimulated nitrogen fixation by 2500% at five of the 19 sites. The addition of N, either with or without simultaneous P addition, suppressed nitrogen fixation by 73% at nine of the 19 sites. 3. Lake outlet streams were warmer and had higher dissolved organic carbon concentrations than inlet streams and those further upstream, but position relative to lakes did not affect chl‐a and nitrogen fixation in the absence of nutrient additions. Chl‐a response to nutrient additions did not change along the length of the study streams, but nitrogen fixation was suppressed more strongly by N, and stimulated more strongly by P, at lower altitude sites. The responses of chl‐a and nitrogen fixation to nutrients were not affected by location relative to lakes. Some variation in responses to nutrients could be explained by nitrate and/or total N concentration. 4. Periphytic chl‐a and nitrogen fixation were affected by nutrient supply, but responses to nutrients were independent of stream position in the landscape relative to lakes. Understanding interactions between nutrient supply, nitrogen fixation and chl‐a may help predict periphytic responses to future perturbations of oligotrophic streams, such as the deposition of atmospheric N. 相似文献
15.
施氮量对小麦氮磷钾养分吸收利用和产量的影响 总被引:29,自引:7,他引:29
高产条件下研究了不同施氮量对小麦植株氮、磷、钾养分吸收利用及籽粒产量的影响.结果表明,适量施氮可促进小麦植株对氮素的吸收与积累,较高的施氮量不利于起身期之后的氮素积累,致使成熟期小麦氮素积累量未能显著提高;与不施氮肥相比,施氮显著提高植株磷素积累量;随施氮量增加,植株磷素积累量增加不显著;施氮量增加促进小麦生育前期对钾素的吸收积累,在生育后期降低植株钾素的流失.随施氮量增加,籽粒氮素含量呈先增后降的趋势,氮素向籽粒的分配比例趋于降低,植株氮素利用效率无显著变化,氮素收获指数下降;不同施氮处理之间籽粒磷素含量和钾素含量无显著差异,施氮量增加,营养器官钾素含量、钾素积累量和钾素向叶片的分配比例均呈增加趋势;同时,磷素和钾素利用效率降低;不同施氮处理间,植株磷素、钾素收获指数无显著差异.籽粒产量随施氮量增加呈先增加后降低的趋势,以施氮195 kg/hm2的处理籽粒产量最高. 相似文献
16.
放牧对草地群落与土壤特征的影响 总被引:2,自引:0,他引:2
针对放牧干扰对草地生态系统的影响,采用回归分析和典型对应分析(CCA)方法,研究放牧对草地植物群落物种多样性与生产力、土壤碳氮含量与生物量关系的影响。结果表明:(1)与休牧草地相比,放牧草地的地上生物量降低31.63%,凋落物生物量降低134.29%;放牧草地的禾草类生物量提高19.77%,而杂草类生物量和豆科类生物量分别降低31.09%和23.42%。(2)当物种多样性指数小于1.3时,休牧草地的生产力明显高于放牧草地;当物种多样性指数大于1.3时,放牧草地的生产力高于休牧草地。(3)CCA分析显示,家畜主要通过影响群落地上生物量、凋落物质量和土壤容重进而影响土壤的碳氮含量。(4)当群落地上生物量小于100g·m-2时,休牧草地的土壤有机碳和全氮含量高于放牧草地,当群落地上生物量大于100g·m-2时,放牧草地则略高于休牧草地。(5)当群落地下生物量小于1 200g·m-2时,放牧草地土壤有机碳、全氮含量高于休牧草地;当地下生物量大于1 200g·m-2时,放牧草地则略低于休牧草地。 相似文献
17.
Hugh A. L. Henry Nona R. Chiariello Peter M. Vitousek Harold A. Mooney Christopher B. Field 《Ecosystems》2006,9(7):1066-1075
Although it is widely accepted that elevated atmospheric carbon dioxide (CO2), nitrogen (N) deposition, and climate change will alter ecosystem productivity and function in the coming decades, the combined
effects of these environmental changes may be nonadditive, and their interactions may be altered by disturbances, such as
fire. We examined the influence of a summer wildfire on the interactive effects of elevated CO2, N deposition, and increased precipitation in a full-factorial experiment conducted in a California annual grassland. In
unburned plots, primary production was suppressed under elevated CO2. Burning alone did not significantly affect production, but it increased total production in combination with nitrate additions
and removed the suppressive effect of elevated CO2. Increased production in response to nitrate in burned plots occurred as a result of the enhanced aboveground production
of annual grasses and forbs, whereas the removal of the suppressive effect of elevated CO2 occurred as a result of increased aboveground forb production in burned, CO2-treated plots and decreased root production in burned plots under ambient CO2.The tissue nitrogen–phosphorus ratio, which was assessed for annual grass shoots, decreased with burning and increased with
nitrate addition. Burning removed surface litter from plots, resulting in an increase in maximum daily soil temperatures and
a decrease in soil moisture both early and late in the growing season. Measures of vegetation greenness, based on canopy spectral
reflectance, showed that plants in burned plots grew rapidly early in the season but senesced early. Overall, these results
indicate that fire can alter the effects of elevated CO2 and N addition on productivity in the short term, possibly by promoting increased phosphorus availability. 相似文献
18.
Marion Schrumpf Wolfgang Zech Johannes Lehmann Herbert V. C. Lyaruu 《Biogeochemistry》2006,78(3):361-387
Organic nutrients have proven to contribute significantly to nutrient cycling in temperate forest ecosystems. Still, little
is known about their relevance in the tropics. In the present study, organic C, N, S and P were analysed in rainfall, throughfall,
litter percolate and soil solution of a montane rainforest at Mt. Kilimanjaro, Tanzania. The aim was to determine the amounts
of organic nutrients in different water pathways and to assess the influence of forest disturbance on organic nutrients by
comparing mature forests, secondary forests and shrub vegetation in clearings. Concentrations of all studied elements increased
from rainfall to throughfall and litter percolate and then exhibited a rapid decrease in the mineral soil. Concentrations
of organic P were above the detection limit only in the litter percolate. Organic N (ON) as a fraction of total N increased
from 50% in rainfall (0.19 mg l−1) to 66% (0.45 mg l−1) in throughfall followed by a decline to 39% in the litter percolate (0.77 mg l−1) of the mature forest. Similarly, proportions of organic S and P amounted to 43 and 34%, respectively, in the litter percolate
in mature forest. For ON, this proportion further decreased to less than 10% in the soil solution. The latter was probably
attributable to a high sorption capacity of the studied Andisols, which led to overall low organic element concentrations
in the soil solution (OC: 1.2 mg l−1, ON: 0.05 mg l−1 at 1 m soil depth) as compared to other temperate and tropical forest ecosystems. Organic element concentrations were higher
in litter percolate and soil solution under the clearings, but there were no differences in the relative contribution of these
elements. Organic nutrient forms at Mt. Kilimanjaro appeared to be much less susceptible to leaching than their inorganic
forms. 相似文献
19.
凋落物分解是连接生态系统地上、地下过程的重要环节,决定了生态系统养分循环速率,但到目前为止对凋落物分解在荒漠草地生态系统受放牧以及外源资源补给影响的研究较少。本研究通过对不同放牧强度(对照、轻牧、中牧和重牧)短花针茅草原群落进行添加氮素(10.0 g N m~(-2) a~(-1))和增水(108 mm/a)处理,探讨群落水平凋落物分解速率的变化。研究结果显示,过去不同强度放牧历史对群落凋落物分解影响极显著(P0.0001)。凋落物前期分解(135 d)过程中,凋落物初始C∶N比与凋落物分解速率常数呈显著负相关关系,表明凋落物可降解性在凋落物前期分解中起主要作用。轻度放牧影响下凋落物分解速度最快,这与该条件下凋落物C∶N比显著低于其他放牧强度下的有关,说明适度放牧不仅有利于群落维持,也在一定程度上有利于生态系统养分循环。当凋落物分解更长时间(870 d)后,对照区凋落物分解速率显著低于放牧处理样地,但凋落物初始C∶N比对凋落物分解速率没有显著影响。进一步分析显示,不同放牧强度背景下长期凋落物分解速率与分解环境的土壤微生物多样性成正相关关系,与群落盖度呈极显著(P0.001)负相关关系。添加氮素显著(P0.05)降低凋落物分解速度,但对凋落物氮含量无显著影响。生长季加水未影响凋落物质量及凋落物分解速度。研究结果表明,凋落物前期分解受凋落物质量影响,但较长时间凋落物分解则与分解过程中接受到的太阳辐射量有关。 相似文献