首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.  相似文献   

2.
Two types of neamine derivatives, neamine-dinucleotide conjugates 8a-g and neamine-PNA conjugates 12a-c and 14a-d, were synthesized. Compound 8a-g were synthesized by the condensation of azido-neamine with dinucleotide-5'-carboxylic acids, followed by reduction and deprotection. Compound 12a-c and 14a-d were synthesized by the similar strategy. The binding affinities of conjugates 8a-g, 12a-c, and 14a-d towards 16S RNA, 18S RNA, and TAR RNA were evaluated by SPR. It indicates that conjugates 12a-c and 14a-d interact with 16S, 18S RNA at the same level as that of neamine, 14a and 14d show about twofold binding affinities to TAR RNA compared to that of neamine. However, the neamine-dinucleotide conjugates 8a-g exhibit very weak binding affinities to 16S, 18S, and TAR RNA, computer modelling results that negative-negative electrostatic repulsion of phosphate group in compound 8a-g and RNA leads to a sharp decrease of the binding affinities compared with that of neamine, neamine-nucleoside and neamine-PNA conjugates.  相似文献   

3.
To achieve a sequence-specific DNA cleavage by topoisomerase I, derivatives of the antitumor drug camptothecin have been covalently linked to triple helix-forming oligonucleotides that bind in a sequence-specific manner to the major groove of double-helical DNA. Triplex formation at the target sequence positions the drug selectively at the triplex site, thereby stimulating topoisomerase I-mediated DNA cleavage at this site. In a continuous effort to optimize this strategy, a broad set of conjugates consisting of (i) 16-20-base-long oligonucleotides, (ii) alkyl linkers of variable length, and (iii) camptothecin derivatives substituted on the A or B quinoline ring were designed and synthesized. Analysis of the cleavage sites at nucleotide resolution reveals that the specificity and efficacy of cleavage depends markedly on the length of both the triple-helical structure and the linker between the oligonucleotide and the poison. The optimized hybrid molecules induced strong and highly specific cleavage at a site adjacent to the triplex. Furthermore, the drug-stabilized DNA-topoisomerase I cleavage complexes were shown to be more resistant to salt-induced reversal than the complexes induced by camptothecin alone. Such rationally designed camptothecin conjugates could provide useful antitumor drugs directed selectively against genes bearing the targeted triplex binding site. In addition, they represent a powerful tool to probe the molecular interactions in the DNA-topoisomerase I complex.  相似文献   

4.
As an important nucleobase in RNA, uracil was introduced into the side chain of cyclen (1,4,7,10-tetraazacyclododecane) by using phenylene dimethylene group as bridge. The target compounds 5 were obtained in high yields. Subsequent experiments demonstrated that the uracil-cyclen conjugates can bind Zn(2+) cation rapidly in water, and the catalytic activities of their Zn(II) complexes 6 in DNA cleavage were also studied. The results showed that Zn(II) complexes can catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) to produce nicked DNA (Form II and Form III) with high selectivity. In water solution, complex 6b may form a unique and stable supramolecular structure, which benefits the DNA cleavage process.  相似文献   

5.
To increase the DNA cleavage activity and the cell delivery of the bis(phenanthroline) DNA cleaver "3-Clip-Phen", conjugates between 3-Clip-Phen and the intercalators acridine and 6-chloro-2-methoxyacridine, through amino acid linkers of various length, were prepared. After complexation with CuCl(2), the ability of these conjugates to cleave phiX 174 DNA in the presence of a reductant and air was compared. The results indicated that (i) the coupling of 3-Clip-Phen to an acridine derivative increased the DNA cleavage efficiency of the copper complexes, (ii) the acridine derivatives were more active than 6-chloro-2-methoxyacridine derivatives, (iii) the linker length influenced cleavage efficiency, the highest DNA cleavage activity being obtained for an aminocaproic spacer.  相似文献   

6.
Topoisomerase I is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins (CPTs). These drugs stimulate DNA cleavage by topoisomerase I but exhibit little sequence preference, inducing toxicity and side effects. A convenient strategy to confer sequence specificity consists of the linkage of topoisomerase poisons to DNA sequence recognition elements. In this context, triple-helix-forming oligonucleotides (TFOs) covalently linked to CPTs were investigated for the capacity to direct topoisomerase I-mediated DNA cleavage in cells. In the first part of our study, we showed that these optimized conjugates were able to regulate gene expression in cells upon the use of a Photinus pyralis luciferase reporter gene system. Furthermore, the formation of covalent topoisomerase I/DNA complexes by the TFO-CPT conjugates was detected in cell nuclei. In the second part, we elucidated the molecular specificity of topoisomerase I cleavage by the conjugates by using modified DNA targets and in vitro cleavage assays. Mutations either in the triplex site or in the DNA duplex receptor are not tolerated; such DNA modifications completely abolished conjugate-induced cleavage all along the DNA. These results indicate that these conjugates may be further developed to improve chemotherapeutic cancer treatments by targeting topoisomerase I-induced DNA cleavage to appropriately chosen genes.  相似文献   

7.
Bis[platinum(II)] [Cl2Pt(LL)PtCl2] complexes 2,5 and 8 with chiral non-racemic ligands: 1a-c (LL = (R,R), (S,S) and (R,S) N,N'-bis(3,4-diaminobutyl)hexanediamide); 4a,b (LL = (R,R) and (S,S) N,N'-bis[3,4-bis(diaminobutyl)] urea); 7a-d (LL' = (R,R), (S,S), (R,S) and (S,R) 4,5-diamino-N-(3,4-diaminobutyl) pentanamide) and bis[platinum(IV)] complex 10-13 with ligands 1a,b and 4a,b have been prepared and characterized by IR, 1H, 13C and 195Pt NMR spectra. The interactions of 2a-c, 5a, 5b, 8a-d and 10a with dsDNA were investigated with the goal of examining whether the chirality, the nature of the spacer and the oxidation state have an influence on platinum-DNA binding properties. All the bis[platinum(II)] complexes form with dsDNA intra- and interstrand crosslinks and crosslinks over sticky ends, whereas the bis[platinum(IV)] complex 10a only forms intra- and interstrand crosslinks. The platinum-DNA coordination sites were determined by the T4 DNA polymerase footprinting method. The results show that all investigated bis(platinum) complexes have high preference towards distinct purines. All isomeric bis(amide) 2a-c and mono(amide) 8a-d complexes exhibit nearly the same binding pattern, whereas the ureide complexes 5a and 5b have other coordination sites with higher sequence preference. Interestingly, the ureides 5a and 5b differ in their coordination sites not only in comparison to the bis(amides) 2a-c and mono(amides) 8a-d, but also between each other. The bis[platinum(IV)] complex 10a also differs in coordination sites in comparison to all the bis[platinum(II)] compounds.  相似文献   

8.
Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3'- or the 5'-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3' end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

9.
Bis-conjugates of hairpin N-methylpyrrole/N-methylimidazole oligocarboxamide minor groove binders (MGB) possessing enhanced affinity and sequence-specificity for dsDNA were synthesized. Two hairpin MGBs were connected by their N-termini via an aminodiacetate linker. The binding of bis-MGB conjugates to the target DNA was studied by gel mobility retardation, footprinting, and circular dichroism; their affinity and binding mode in the DNA minor groove were determined. In order to functionalize the bis-MGB conjugates, DNA-cleaving agents such as phenanthroline or bipyridine were attached. Effective site-specific cleavage of target DNA in the presence of Cu(2+) ions was observed.  相似文献   

10.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

11.
Wu J  Cui G  Zhao M  Cui C  Peng S 《Molecular bioSystems》2007,3(12):855-861
To explore the intercalating mechanism of -carbolines, four novel N-(3-carboxyl-9-benzyl-carboline-1-yl)ethylamino acids [-phenylalanine (6a), -alanine (6b), -isoleucine (6c) and -glycine (6d)] were prepared here. Their in vitro anticancer activities were examined by their anti-proliferation for 5 human carcinoma cell lines. The average IC50s against 5 human carcinoma cell lines are 53.54 microM, 118.77 microM, 147.34 microM and greater than 291.63 microM for 6a, 6b, 6c and 6d, respectively. The DNA intercalating mechanism of 6a-d was approved by the comparison of the parameters and signals of UV, CD and fluorescence spectra of calf thymus DNA (CT DNA) alone and the CT DNA/6a-d system. Using fluorescence titration based kinetic analysis a two-step-course consisting of stacking and intercalating was described and the stacking was considered as the key step to the CT DNA intercalating mechanism of 6a-d. Using fluorescence titration based thermomechanical analysis, the stacking complexes of 6a-d with CT DNA were described to be formed spontaneously and to be stabilized predominantly by their hydrophobic interactions. The intercalation itself goes very fast and only has limited contribution to their anticancer activities.  相似文献   

12.
Abstract

Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3′- or the 5′-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3′ end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

13.
Hairpin conjugates of achiral seco-cyclopropaneindoline-2-benzofurancarboxamide (achiral seco-CI-Bf) and three diamides (ImPy 1, PyIm 2, and PyPy 3, where Py is pyrrole, and Im is imidazole), linked by a gamma-aminobutyrate group, were synthesized. The sequence-specific covalent alkylation of the achiral CI moiety with adenine-N3 in the minor groove was ascertained by thermally induced DNA cleavage experiments. The results provide evidence that hairpin conjugates of achiral seco-CI-Bf-gamma-polyamides could be tailored to target specific DNA sequences according to a set of general rules: the achiral CI moiety selectively reacts with adenine-N3, a stacked pair of imidazole/benzofuran prefers a G/C base pair, and a pyrrole/benzofuran prefers an A/T or T/A base pair. Models for the binding of hairpin conjugates 1-3 with sequences 5'-TCA(888)G-3', 5'-CAA(857)C-3', and 5'-TTA(843)C-3' are proposed.  相似文献   

14.
Attaching peptides to metallodrugs may result in improved biological properties of the complexes. The potential use of cell penetrating peptides (CPPs) as cell delivery vectors is attractive, since directed cell uptake of (metallo)drugs remains a major challenge in anticancer drug design. In this work, we report the synthesis of peptide conjugates of the organometallic Os(II) anticancer complex [(η(6)-biphenyl)Os(picolinate)Cl] with different arginine (Arg) chain lengths. Complexes conjugated to Arg(5) or Arg(8) at the 5-position of the picoline ring increase Os uptake into A2780 human ovarian cancer cells by ca. 2× and 10×, respectively, whereas a single Arg had no effect. Furthermore, a 15-fold increase in binding of Os to DNA, a potential target for these complexes, was observed for Arg(8) compared to the Arg(1) conjugate. The Arg(5) and Arg(8) conjugates exhibited fast kinetics of binding to calf thymus DNA and an ability to precipitate DNA at very low concentrations. In serum-free medium, the Arg(8) complex was cytotoxic (IC(50) 33 μM) and appears to be a rare example of a bioactive organometallic peptide conjugate. Experiments on CHO cells deficient in DNA repair suggested that unrepaired DNA damage contributes to the cytotoxicity of the Arg(5) and Arg(8) conjugates. These studies demonstrate the potential for use of cell- and nucleus-penetrating peptides in targeting organometallic arene anticancer complexes.  相似文献   

15.
Novel nonpeptide serine/histamine amides (1: l-Ser-Hism,2: d-Ser-Hism) with potent DNA cleavage activity were designed. Conformational analysis and docking study were carried out in an attempt to understand the DNA cleavage mechanism of the designed enantiomeric nonpeptides. First, the most stable conformers of the designed amides were obtained from the conformational analysis by random search. Next, the three-dimensional structures of l-Ser-Hism.5'-TpTpdC-3' and d-Ser-Hism.5'-TpTpdC-3' complexes were built using molecular docking techniques. The docked diastereoisomeric aggregates show that both l-Ser-Hism and d-Ser-Hism bind to two neighboring phosphates in the 5'-TpTpdC-3' backbone through H-bonds. This binding mode suggests a possible phosphodiester bond hydrolysis mechanism. In addition, the binding energies of two constructed complexes were also calculated with the Tripos force field. It indicates that the binding ability between l-Ser-Hism and 5'-TpTpdC-3' is stronger than that of d-Ser-Hism, suggesting a stronger DNA cleavage activity of l-Ser-Hism than that of d-Ser-Hism. The results agree with our experimental DNA cleavage assays. Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-002-0114-9. A link in the frame on the left on that page takes you directly to the supplementary material. Figure Docking structures of1 and2 binding with oligonucleotide: l-Ser-Hism.5'-TpTpdC-3'(left), d-Ser-Hism.5'-TpTpdC-3'(right). Hydrogen bonds are shown in dotted lines. Only one strand of the oligonucleotide is shown for clarity  相似文献   

16.
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.  相似文献   

17.
Ligand binding influences the dynamics of the DNA helix in both the binding site and adjacent regions. This, in particular, is reflected in the changing pattern of cleavage of complexes under the action of ultrasound. The specificity of ultrasound-induced cleavage of the DNA sugar-phosphate backbone was studied in actinomycin D (AMD) complexes with double-stranded DNA restriction fragments. After antibiotic binding, the cleavage intensity of phosphodiester bonds between bases was shown to decrease at the chromophore intercalation site and to increase in adjacent positions. The character of cleavage depended on the sequences flanking the binding site and the presence of other AMD molecules bound in the close vicinity. A comparison of ultrasonic and DNase I cleavage patterns of AMD–DNA complexes provided more detail on the local conformation and dynamics of the DNA double helix in both binding site and adjacent regions. The results pave the way for developing a novel approach to studies of the nucleotide sequence dependence of DNA conformational dynamics and new techniques to identify functional genome regions.  相似文献   

18.
New conjugates of triplex-forming pyrimidine oligo(2'-O-methylribonucleotides) with one or two 'head-to-head' hairpin oligo(N-methylpyrrole carboxamide) minor-groove binders (MGBs) attached to the terminal phosphate of the oligonucleotides with a oligo(ethylene glycol) linker were synthesized. It was demonstrated that, under appropriate conditions, the conjugates form stable complexes with double-stranded DNA (dsDNA) similarly to triplex-forming oligo(deoxyribonucleotide) (TFO) conjugates containing 5-methylated cytosines. Kinetic and thermodynamic parameters of the complex formation were evaluated by gel-shift assay and thermal denaturation. Higher melting temperatures (Tm), faster complex formation, and lower dissociation constants (Kd) of the triple helices (6-7 nM) were observed for complexes of MGB-oligo(2'-O-methylribonucleotide) conjugates with the target dsDNA compared to the nonconjugated individual components. Interaction of MGB moieties with the HIV proviral DNA fragment was indicated by UV/VIS absorption changes at 320 nm in the melting curves. The introduction of thymidine via a 3',3'-type 'inverted' phosphodiester linkage at the 3'-end of oligo(2'-O-methylribonucleotide) conjugates (3'-protection) had no strong influence on triplex formation, but slightly affected complex stability. At pH 6.0, when one or two hairpin MGBs were attached to the oligonucleotide, both triplex formation and minor-groove binding played important roles in complex formation. When two 'head-to-head' oligo(N-methylpyrrole) ligands were attached to the same terminal phosphate of the oligonucleotide or the linker, binding was observed at pH >7.5 and at high temperatures (up to 74 degrees). However, under these conditions, binding was retained only by the MGB part of the conjugate.  相似文献   

19.
The 2-alkynylbenzothiazolium salts 3a-d incorporating an N-propargyl moiety have been prepared as aza-enediyne analogues. While these aza-enediynes are shown to be modest DNA cleavage agents, DNA cleavage was also observed with the N-methyl-2-alkynylbenzothiazolium salt 4, which lacks the aza-enediyne moiety. The structural requirements for DNA cleavage, and the correlation of DNA cleavage efficiency with the propensity of these compounds to undergo nucleophilic addition by methanol support a proposed DNA cleavage mechanism involving DNA alkylation by appropriate 2-alkynyl-substituted benzothiazolium salts.  相似文献   

20.
The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5?×?10(5) and 5?×?10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号