首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells in plant shoot and root meristems are maintained throughout the life of the plant and produce somatic daughter cells that make up the body of the plant. Plant stem cells can also be derived from somatic cells in vivo and in vitro. Recent findings are refining our knowledge of signaling pathways that define stem cell fate and specify either shoot or root stem cell function. New evidence also highlights a role for epigenetic mechanisms in controlling stem cell fate.  相似文献   

2.
Signals that regulate stem cell activity during plant development   总被引:1,自引:0,他引:1  
Plant stem cells are used continuously to generate new structures during the entire life-span of the organism. In the adult plant, stem cells are found in specialized structures called meristems. The meristems contain the stem cell niche together with rapidly dividing daughter cells that will ultimately differentiate into specific cell types. Some of the master genes that orchestrate the establishment and maintenance of the stem cell niche have now been identified in both the root and the shoot. Recent results show that these genes also determine the fate of the stem cells and that feedback signals from differentiated cells are involved in stem cell specification. These advances have provided a framework to understand how short-range and long-range signals are integrated to specify and position the stem cell niche in the meristems, and how the differentiation potential of plant stem cells is controlled.  相似文献   

3.
4.
Little is known of the mechanisms that induce the dedifferentiation of a single somatic cell into a totipotent embryogenic cell that can either be regenerated or develop into an embryo and subsequently an entire plant. In this Opinion article, we examine the cellular, physiological and molecular similarities and differences between different plant stem cell types. We propose to extend the plant stem cell concept to include single embryogenic cells as a totipotent stem cell based on their capacity to regenerate or develop into an embryo under certain conditions. Our survey suggests that differences in chromatin structure might ensure that meristem-localized stem cells have supervised freedom and are pluripotent, and that embryogenic stem cells are unsupervised, autonomous and, hence, freely totipotent.  相似文献   

5.
6.
Scheres B 《Cell》2005,122(4):499-504
A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom.  相似文献   

7.
This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.  相似文献   

8.
During postembryonic development, all organs of a plant are ultimately derived from a few pluripotent stem cells found in specialized structures called apical meristems. Here we discuss our current knowledge about the regulation of plant stem cells and their environments with main emphasis on the shoot apical meristem of Arabidopsis thaliana. Recent studies suggest that stem cells are localized in specialized niches where signals from surrounding cells maintain their undifferentiated state. In the shoot meristem, initiation of stem cells during embryogenesis, regulation of stem-cell homeostasis and termination of stem-cell maintenance during flower development appear to primarily involve regulation of the stem-cell niche.  相似文献   

9.
杜斐  焦雨铃 《植物学报》2020,55(5):537-540
植物茎顶端分生组织干细胞是具有持续分化潜能的细胞团, 是植物体地上部所有组织和器官的来源。由于植物行固着生长模式, 其无法通过移动来趋利避害, 因此保护植物干细胞免受病毒和其它病原体侵害对于植物正常生长发育至关重要。尽管人们很早就观察到植物茎顶端干细胞区域与其它部位相比具有极强的抗病毒特性, 但很长时间以来对于植物干细胞如何抵御病毒侵染却知之甚少。近日, 中国科学技术大学赵忠团队阐明了拟南芥(Arabidopsis thaliana)茎顶端干细胞通过WUS蛋白介导的固有免疫反应抵御病毒侵害的机制。WUS能被黄瓜花叶病毒诱导表达, 并抑制病毒在茎尖中央区和周边区积累。WUS通过直接抑制S-腺苷-L-甲硫氨酸依赖的甲基转移酶(SAM MTase)基因的转录, 影响rRNA的加工和核糖体的稳定性, 使病毒蛋白质合成受阻, 从而阻止病毒的复制与传播。该研究揭示了植物体的一种保守且广谱抗病毒策略, 具有重要的理论意义和应用价值。  相似文献   

10.
11.
The essential nature of meristematic tissues is addressed with reference to conceptual frameworks that have been developed to explain the behaviour of animal stem cells. Comparisons are made between different types of plant meristems with the objective of highlighting common themes that might illuminate underlying mechanisms. A more in depth comparison of the root and shoot apical meristems is made which suggests a common mechanism for maintaining stem cells. The relevance of organogenesis to stem cell maintenance is discussed, along with the nature of underlying mechanisms which help ensure that stem cell production is balanced with the depletion of cells through differentiation. Mechanisms that integrate stem cell behaviour in the whole plant are considered, with a focus on the roles of auxin and cytokinin. The review concludes with a brief discussion of epigenetic mechanisms that act to stabilise and maintain stem cell populations.  相似文献   

12.
Recent studies have provided significant new insights into the gene actions that specify and maintain stem cells in plant shoots and roots. New layers of genetic control and potential signalling pathways and effector mechanisms have emerged from these new studies and will be reviewed here. These new findings refine the current model in which stem cells in plant meristems are regulated by negative feedback loops and uncover a fundamental mechanism for stem cell maintenance that might be common to shoots and roots.  相似文献   

13.
Shoot apical meristem maintenance: the art of a dynamic balance   总被引:12,自引:0,他引:12  
The aerial structure of higher plants derives from cells at the tip of the stem, in the shoot apical meristem (SAM). Throughout the life of a plant, the SAM produces stem tissues and lateral organs, and also regenerates itself. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent stem cells offsets the output of differentiating cells. This flow depends on extracellular signaling within the SAM, governed by a spatial regulatory feedback loop that maintains a reservoir of stem cells, and on factors that prevent meristem cells from differentiating prematurely. The terminating floral meristem incorporates the spatial regulation scheme into a temporal regulation pathway involving flower patterning factors.  相似文献   

14.
V B Ivanov 《Tsitologiia》1986,28(3):295-302
Cellular patterns of continual cell proliferation are considered in plants and animals. In plants, the cells, analogous to the animal stem cells, can be formed many times during plant ontogenesis. Their functioning as stem cells is determined by their position in the growing organ. This is the reason why a plant can grow for a very long time. There are some common features of cellular patterns of proliferation in plants and animals providing the stability and optimal subordination between cell proliferation, differentiation and function.  相似文献   

15.
The biological purpose of plant stem cells is to maintain themselves while providing new pools of differentiated cells that form organs and rejuvenate or replace damaged tissues. Protein homeostasis or proteostasis is required for cell function and viability. However, the link between proteostasis and plant stem cell identity remains unknown. In contrast to their differentiated counterparts, we find that root stem cells can prevent the accumulation of aggregated proteins even under proteotoxic stress conditions such as heat stress or proteasome inhibition. Notably, root stem cells exhibit enhanced expression of distinct chaperones that maintain proteome integrity. Particularly, intrinsic high levels of the T‐complex protein‐1 ring complex/chaperonin containing TCP1 (TRiC/CCT) complex determine stem cell maintenance and their remarkable ability to suppress protein aggregation. Overexpression of CCT8, a key activator of TRiC/CCT assembly, is sufficient to ameliorate protein aggregation in differentiated cells and confer resistance to proteotoxic stress in plants. Taken together, our results indicate that enhanced proteostasis mechanisms in stem cells could be an important requirement for plants to persist under extreme environmental conditions and reach extreme long ages. Thus, proteostasis of stem cells can provide insights to design and breed plants tolerant to environmental challenges caused by the climate change.  相似文献   

16.
植物干细胞培养研究进展   总被引:1,自引:0,他引:1  
植物干细胞位于分生组织,是处于未分化状态的细胞,液泡化程度低,具有较高的线粒体活性,遗传稳定,具有很强的自我更新和再生能力。植物干细胞培养在下游制药和功能性食品以及化妆品行业具有广泛的应用潜质。文中综述了植物干细胞的基本培养技术、鉴别技术,为该领域的深入研究提供参考。  相似文献   

17.
Dinneny JR  Benfey PN 《Cell》2005,123(7):1180-1182
Both cellular differentiation and stem cell maintenance must occur at the root apex in order to ensure the continuous growth of plant roots. In this issue of Cell, it is revealed that a canonical retinoblastoma pathway plays a crucial role in regulating the balance between differentiation and renewal of plant root stem cells.  相似文献   

18.
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.  相似文献   

19.
20.
Journal of Plant Research - Plants maintain populations of stem cells to generate new organs throughout the course of their lives. The pathways that regulate plant stem cell maintenance have...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号