首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
S-adenosyl-L-homocysteine hydrolase of Plasmodium falciparum (PfSAHH) is a potential drug target against malaria, and selective inhibition of PfSAHH is the excellent strategy to prevent the growth of parasite inside the host. Therefore, a comparative analysis of human S-adenosyl-L-homocysteine hydrolase (HsSAHH) and PfSAHH has been performed to explore the structural differences. Structural superimposition of PfSAHH and HsSAHH has generated the RMSD of 0.749 Å over 394 alpha carbon pairs. Residues of PfSAHH from position Tyr152 to Lys193 aligned with insertion/deletion region in HsSAHH, and these extra residues results in an extent of variation in cavity region of PfSAHH. Nicotinamide adenine dinucleotide (NAD) was observed to form hydrogen bonding with Thr201, Thr202, Thr203, Asn235, Val268, Glu287, Asn322, Ile343, Asn391, Lys473, and Tyr477 and also forms hydrophobic interactions with Val268, Ile288, and Thr320 of PfSAHH. In comparison to HsSAHH, Asn322, Lys473, and Tyr477 residues of PfSAHH are unique in interaction with NAD. 2-Fluoroaristeromycin and other analogues of aristeromycin have shown the good binding affinity for both enzymes. Structural differences between PfSAHH and HsSAHH might be employed to design the potential inhibitor of PfSAHH. To find the target enzyme responsible for an anti-malarial effect, molecular docking and interaction analysis of curcumin were performed with 34 drug targets of P. falciparum. Curcumin shows high affinity for binding with HGPRT of PfHGPRT, and an anti-malarial effect of curcumin might be due to binding with PfHGPRT.  相似文献   

2.
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. The emergence of strains of malarial parasite resistant to conventional drug therapy has stimulated searches for antimalarials with novel modes of action. S-Adenosyl-L-homocysteine hydrolase (SAHH) is a regulator of biological methylations. Inhibitors of SAHH affect the methylation status of nucleic acids, proteins, and small molecules. P.falciparum SAHH (PfSAHH) inhibitors are expected to provide a new type of chemotherapeutic agent against malaria. Despite the pressing need to develop selective PfSAHH inhibitors as therapeutic drugs, only the mammalian SAHH structures are currently available. Here, we report the crystal structure of PfSAHH complexed with the reaction product adenosine (Ado). Knowledge of the structure of the Ado complex in combination with a structural comparison with Homo sapiens SAHH (HsSAHH) revealed that a single substitution between the PfSAHH (Cys59) and HsSAHH (Thr60) accounts for the differential interactions with nucleoside inhibitors. To examine roles of the Cys59 in the interactions with nucleoside inhibitors, a mutant PfSAHH was prepared. A replacement of Cys59 by Thr results in mutant PfSAHH, which shows HsSAHH-like nucleoside inhibitor sensitivity. The present structure should provide opportunities to design potent and selective PfSAHH inhibitors.  相似文献   

3.
S-adenosylhomocysteine hydrolase (SAHH) is a key regulator of S-adenosylmethionine-dependent methylation reactions and an interesting pharmacologic target. We cloned the SAHH gene from Plasmodium falciparum (PfSAHH), with an amino acid sequence agreeing with that of the PlasmoDB genomic database. Even though the expressed recombinant enzyme, PfSAHH, could use 3-deaza-adenosine (DZA) as an alternative substrate in contrast to the human SAHH, it has a unique inability to substitute 3-deaza-(+/-)aristeromycin (DZAri) for adenosine. Among the analogs of DZA, including neplanocin A, DZAri was the most potent inhibitor of the PfSAHH enzyme activity, with a K(i) of about 150 nM, whether Ado or DZA was used as a substrate. When the same DZA analogs were tested for their antimalarial activity, they also inhibited the in vitro growth of P. falciparum parasites potently. Homology-modeling analysis revealed that a single substitution (Thr60-Cys59) between the human and malarial PfSAHH, in an otherwise similar SAH-binding pocket, might account for the differential interactions with the nucleoside analogs. This subtle difference in the active site may be exploited in the development of novel drugs that selectively inhibit PfSAHH. We performed a comprehensive phylogenetic analysis of the SAHH superfamily and inferred that SAHH evolved in the common ancestor of Archaea and Eukaryota, and was subsequently horizontally transferred to Bacteria. Additionally, an analysis of the unusual and uncharacterized AHCYL1 family of the SAHH paralogs extant only in animals reveals striking divergence of its SAH-binding pocket and the loss of key conserved residues, thus suggesting an evolution of novel function(s).  相似文献   

4.
Several prototypes of C-C biflavones (a-f) were synthesized and evaluated their inhibitory activity against phospholipase A(2)s (PLA(2)s) activity. The synthetic C-C biflavones (a-f) showed rather different inhibitory activity against various PLA(2)s. Most synthetic C-C biflavonoids exhibited potent and broad inhibitory activity against various sPLA(2)s and cPLA(2) tested regardless of their structural array. In particular, of natural and synthetic biflavonoids tested, the synthetic C-C biflavonoid (d) only showed inhibitory activity against sPLA(2) X. None of the natural and synthetic biflavonoids tested showed inhibitory activity against sPLA(2) IB. Further chemical modification of these basic structures will be carried out in order to investigate the synthetic C-C biflavones which possess more selective inhibitory activity against isozymes of PLA(2).  相似文献   

5.
S-adenosyl-l-homocysteine hydrolase from a malaria parasite Plasmodium falciparum (PfSAHH) has been crystallized by the vapor diffusion method. The crystals belong to an orthorhombic space group P212121 with the cell dimensions of a = 76.66 A, b = 86.31 A, and c = 335.6 A. There are four subunits (one tetramer) per asymmetric unit. X-ray diffraction data have been collected up to 2.8 A resolution. Self-rotation function studies suggest that the tetrameric PfSAHH molecule has the 222 point group symmetry.  相似文献   

6.
We designed several HIV protease inhibitors with various d-cysteine derivatives as P(2)/P(3) moieties based on the structure of clinical drug candidate, KNI-764. Herein, we report their synthesis, HIV protease inhibitory activity, HIV IIIB cell inhibitory activity, cellular toxicity, and inhibitory activity against drug-resistant HIV strains. KNI-1931 showed distinct selectivity against HIV proteases and high potency against drug-resistant strains, surpassing those of Ritonavir and Nelfinavir.  相似文献   

7.
Tetrocarcin A was recently identified as an inhibitor of the anti-apoptotic function of Bcl-2. We synthesized novel tetrocarcin derivatives in order to increase their selective inhibitory activity against Bcl-2. It was found that 21-acetoxy-9-glycosyloxy derivatives had potent Bcl-2 inhibitory activity without significant antimicrobial activity.  相似文献   

8.
In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a series of new quinoxaline-based derivatives was designed and synthesized. The target compounds were biologically evaluated for their inhibitory activity against VEGFR-2. The design of the target compounds was accomplished after a profound study of the structure activity relationship (SAR) of type-II VEGFR-2 inhibitors. Among the synthesized compounds, 1-(2-((4-methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa) displayed the highest inhibitory activity against VEGFR-2. Molecular modeling study involving molecular docking and field alignment was implemented to interpret the variable inhibitory activity of the newly synthesized compounds.  相似文献   

9.
Several alkyl substituted 1-beta-D-ribofuranosyl-1,2-dihydropyrimidin-2-one derivatives were synthesized by the method of stannic chloride-catalyzed glycosidation method to elucidate their inhibitory activity of cytidine deaminase and also their antitumor activities in vitro and in vivo. Alkyl substitution at position 4 or 6 of the derivatives decreased their inhibitory activity for cytidine deaminase and also decreased antitumor activity against L1210 cells in vitro.  相似文献   

10.
The synthesized imidazolyl substituted delta2-isoxazolines were subjected to Phospholipase A(2) (PLA(2)) enzyme inhibitory activity against snake venom source and their structure-activity relationship with respect to different groups attached to this moiety is reported for the first time. The crystal structure of the compound 2-butyl-5-chloro-3H-imidazolyl-4-carbaldehyde oxime 2, an intermediate for the construction of isoxazolines is reported. These compounds exerted a significant PLA(2) enzyme inhibitory activity against group II PLA(2). The in vivo activity on mice of selected compounds 3bI and 3bIV shows the comparable anti-inflammatory activity with the known standard ursolic acid.  相似文献   

11.
Thirty samples of Indonesian medicinal plants were analyzed for their capacity to inhibit in vitro metabolism by human cytochrome P450 3A4 (CYP3A4) and CYP2D6 with a radiometric assay. The MeOH-soluble fractions of 25 samples, prepared from water extracts, demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, and 21 samples on the metabolism mediated by CYP2D6. Among the MeOH-soluble fractions, Piper nigrum leaf showed the highest inhibitory activity against CYP3A4 (91.7%), and Punica granatum against CYP2D6 (98.1%). The water extracts of which MeOH-soluble fraction showed inhibitory activity more than 70% were fractionated with EtOAc. From the EtOAc-soluble fractions, Curcuma heyneana (67.0%), Pi. cubeba (75.0%), Pi. nigrum fruit (84.0%), Pi. nigrum leaf (85.8%), and Zingiber aromaticum (75.3%) demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, but only Pi. nigrum fruit (72.8%) and Pi. nigrum leaf (69.1%) showed strong inhibitory activity against CYP2D6. For samples that showed more than 70% inhibition, their IC(50) values were determined. The most potent inhibitory activity against CYP3A4 (IC(50) value of 25 microg/ml) was found for the extract of Pi. nigrum leaf, while that of Catharanthus roseus showed the most potent inhibitory effect against CYP2D6 (IC(50) value of 11 microg/ml). These results should indicate once more the possibility of potential medicinal plant-drug interactions.  相似文献   

12.
A new class of 2-pyrrolidinone derivatives was designed, synthesized, and tested for their antioxidant and anti-inflammatory activities. The compounds were evaluated for their inhibitory activity against LOX. The most potent among them, 14d [IC(50) 0.08 (±0.005)mM], and 14e [IC(50) 0.0705 (±0.003)mM], were also tested in vivo. The compound 14d induced equipotent inhibition against rat paw edema, which is very close to the effect produced by the commonly used standard, namely indomethacin (47%). The LOX inhibitory activity of the compound 14e proceeds in parallel to the % inhibitory value of lipid peroxidation meaning that this LOX inhibitory activity is supported by the lipid peroxidation inhibition. The molecular features that govern their bioactivity were explored through in silico docking experiments. The results showed that acidic moieties must be placed in certain distance and orientation in the active site of LOX enzyme in order to productively exhibit inhibitory activity. In addition, the 2-pyrrolidinone template significantly contributes in the inhibitory properties of the new compounds.  相似文献   

13.
Thirty-one 3-aryl-4-alkylaminofuran-2(5H)-ones were designed, prepared and tested for their antibacterial activity. Some of them showed significant antibacterial activity against Gram-positive organisms, especially against Staphylococcus aureus ATCC 25923, but all were inactive against Gram-negative organisms. Out of these compounds, 3-(4-bromophenyl)-4-(2-(4-nitrophenyl)hydrazinyl)furan-2(5H)-one (4a11) showed the most potent antibacterial activity against S. aureus ATCC 25923 with MIC(50) of 0.42 μg/mL. The enzyme assay revealed that the possible antibacterial mechanism of the synthetic compounds might be due to their inhibitory activity against tyrosyl-tRNA synthetase. Molecular dockings of 4a11 into S. aureus tyrosyl-tRNA synthetase active site were also performed. This inhibitor snugly fitting the active site might well explain its excellent inhibitory activity. Meanwhile, this modeling disclosed that a more suitable optimization strategy might be to modify the benzene ring at 3-position of furanone with hydrophilic groups.  相似文献   

14.
Tarocystatin from Colocasia esculenta, a group-2 phytocystatin, is a defense protein against phytopathogenic nematodes and fungi. It is composed of a highly conserved N-terminal region, which is homological to group-1 cystatin, and a repetitive peptide at the C-terminus. The purified recombinant proteins of tarocystatin, such as full-length (FL), N-terminus (Nt) and C-terminus (Ct) peptides, were produced and their inhibitory activities against papain as well as their antifungal effects were investigated. Kinetic analysis revealed that FL peptide exhibited mixed type inhibition (K(ia) = 0.098 microM and K(ib) = 0.252 microM) and Nt peptide showed competitive inhibition (K(i) = 0.057 microM), whereas Ct peptide possessed weak papain activation properties. A shift in the inhibitory pattern from competitive inhibition of Nt peptide alone to mixed type inhibition of FL peptide implied that the Ct peptide has an regulatory effect on the function of FL peptide. Based on the inhibitory kinetics of FL (group-2) and Nt (group-1) peptides on papain activity, an inhibitory mechanism of group-2 phytocystatins and a regulatory mechanism of extended Ct peptide have each been proposed. By contrast, the antifungal activity of Nt peptide appeared to be greater than that of FL peptide, and the Ct peptide showed no effect on antifungal activity, indicating that the antifungal effect is not related to proteinase inhibitory activity. The results are valid for most phytocystatins with respect to the inhibitory mechanism against cysteine proteinase.  相似文献   

15.
Abstract

2′-Azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine were evaluated for their inhibitory activity against ribonucleotide reductase and for subsequent cell growth inhibition. Their mono-and di-phosphates were synthesized and their inhibitory activities against the reductase were also determined in a permeabilized cell system, along with the two nucleosides. The results of the present study identify the first phosphorylation step involved in the conversion of the two azidonucleosides to the corresponding diphosphates to be rate-limiting in the overall activation.  相似文献   

16.
A new series of oxopyrrolidines was synthesized and evaluated for their effect on Alzheimer‘s disease by measuring their inhibitory activity against acetyl cholinesterase enzyme and amyloid β 42 protein. Most of the compounds showed good inhibitory activity with ethyl 2-(2-(2, 6-dimethylphenylcarbamoyl)- 5-oxopyrrolidin-1-yl) acetate (V) having the highest activity against acetyl cholinesterase with IC50 value 1.84 ng/g tissue compared to standard donepezil 3.34 ng/g tissue. Furthermore, compound 1-((4-(4-chlorophenyl) piperazin-1-yl) methyl)-N-(2,6-dimethylphenyl)-5- oxopyrrolidine- 2-carboxamide (IIIe) displayed the highest activity against β 42 protein with IC50 value of 11.3 Pg/g tissue compared to 18.4 Pg/g tissue of donepezil.  相似文献   

17.
A series of 2′-hydroxychalcones has been synthesized and screened for their in vitro inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin production from lipopolysaccharide-treated RAW 264.7 cells. Structure–activity relationship study suggested that inhibitory activity against prostaglandin E2 production was governed to a greater extent by the substituent on B ring of the chalcone, and most of the active compounds have at least two methoxy or benzyloxy groups on B ring. The relationship between chalcone structures and their PGE2 inhibitory activities was also interpreted by docking study on cyclooxygenase-2.  相似文献   

18.
A series of novel l-lysine derivatives were designed, synthesized, and assayed for their inhibitory activities on amino-peptidase N (APN)/CD13 and matrix metalloproteinase-2 (MMP-2). The preliminary biological test showed that most of the compounds displayed a high inhibitory activity against MMP-2 and a low activity against APN except compound B6 which exhibited good potency (IC(50)=13.2microM) similar with APN inhibitor Bestatin (IC(50)=15.5microM), and could be used as lead compound in the future.  相似文献   

19.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

20.
A series of beta-D-2',3'-didehydro-2',3'-dideoxy-nucleosides bearing a tether attached at the C-5 position and their beta-L-counterparts was synthesized. Their inhibitory activities against human immunodeficiency virus (HIV) were investigated and compared to establish relationship(s) between compound structure and their antiviral activity. No significant activity was observed for beta-D- and beta-L-modified nucleosides respectively 7a-c and 14a-c, but 7d and 14d exhibited a weak activity against HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号