首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Little is known about how neural stem cells are formed initially during development. We investigated whether a default mechanism of neural specification could regulate acquisition of neural stem cell identity directly from embryonic stem (ES) cells. ES cells cultured in defined, low-density conditions readily acquire a neural identity. We characterize a novel primitive neural stem cell as a component of neural lineage specification that is negatively regulated by TGFbeta-related signaling. Primitive neural stem cells have distinct growth factor requirements, express neural precursor markers, generate neurons and glia in vitro, and have neural and non-neural lineage potential in vivo. These results are consistent with a default mechanism for neural fate specification and support a model whereby definitive neural stem cell formation is preceded by a primitive neural stem cell stage during neural lineage commitment.  相似文献   

3.
Lenka N  Ramasamy SK 《PloS one》2007,2(12):e1349
The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES) cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.  相似文献   

4.
5.
BACKGROUND: Pluripotent embryonic stem (ES) cells, which have the capacity to give rise to all tissue types in the body, show great promise as a versatile source of cells for regenerative therapy. However, the basic mechanisms of lineage specification of pluripotent stem cells are largely unknown, and generating sufficient quantities of desired cell types remains a formidable challenge. Small molecules, particularly those that modulate key developmental pathways like the bone morphogenetic protein (BMP) signaling cascade, hold promise as tools to study in vitro lineage specification and to direct differentiation of stem cells toward particular cell types. METHODOLOGY/ PRINCIPAL FINDINGS: We describe the use of dorsomorphin, a selective small molecule inhibitor of BMP signaling, to induce myocardial differentiation in mouse ES cells. Cardiac induction is very robust, increasing the yield of spontaneously beating cardiomyocytes by at least 20 fold. Dorsomorphin, unlike the endogenous BMP antagonist Noggin, robustly induces cardiomyogenesis when treatment is limited to the initial 24-hours of ES cell differentiation. Quantitative-PCR analyses of differentiating ES cells indicate that pharmacological inhibition of BMP signaling during the early critical stage promotes the development of the cardiomyocyte lineage, but reduces the differentiation of endothelial, smooth muscle, and hematopoietic cells. CONCLUSIONS/ SIGNIFICANCE: Administration of a selective small molecule BMP inhibitor during the initial stages of ES cell differentiation substantially promotes the differentiation of primitive pluripotent cells toward the cardiomyocytic lineage, apparently at the expense of other mesodermal lineages. Small molecule modulators of developmental pathways like dorsomorphin could become versatile pharmacological tools for stem cell research and regenerative medicine.  相似文献   

6.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification.  相似文献   

7.
Differentiation of embryonic stem cells into retinal neurons   总被引:14,自引:0,他引:14  
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement.  相似文献   

8.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

9.
All vertebrate embryos have multipotent cells until gastrulation but, to date, derivation of embryonic stem (ES) cell lines has been achieved only for mouse and primates. ES cells are derived from mammalian inner cell mass (ICM) tissue that express the Class V POU domain (PouV) protein Oct4. Loss of Oct4 in mice results in a failure to maintain ICM and consequently an inability to derive ES cells. Here, we show that Oct4 homologues also function in early amphibian development where they act as suppressors of commitment during germ layer specification. Antisense morpholino mediated PouV knockdown in Xenopus embryos resulted in severe posterior truncations and anterior neural defects. Gastrulation stage embryos showed reduced expression of genes associated with uncommitted marginal zone cells, while the expression of markers associated with more mature cell states was expanded. Importantly, we have tested PouV proteins from a number of vertebrate species for the ability to substitute Oct4 in mouse ES cells. PouV domain proteins from both Xenopus and axolotl could support murine ES cell self-renewal but the only identified zebrafish protein in this family could not. Moreover, we found that PouV proteins regulated similar genes in ES cells and Xenopus embryos, and that PouV proteins capable of supporting ES cell self-renewal could also rescue the Xenopus PouV knockdown phenotype. We conclude that the unique ability of Oct4 to maintain ES cell pluripotency is derived from an ancestral function of this class of proteins to maintain multipotency.  相似文献   

10.
11.
Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression.  相似文献   

12.
WNT and bone morphogenetic protein (BMP) signaling are known to stimulate hemogenesis from pluripotent embryonic stem (ES) cells. However, osteochondrogenic mesoderm was generated effectively when BMP signaling is kept to a low level, while WNT signaling was strongly activated. When mesoderm specification from ES cells was exogenous factor dependent, WNT3a addition supported the generation of cardiomyogenic cells expressing lateral plate/extraembryonic mesoderm genes, and this process involved endogenous BMP activities. Exogenous BMP4 showed a similar effect that depended on endogenous WNT activities. However, neither factor induced robust chondrogenic activity. In support, ES cell differentiation in the presence of either WNT3a or BMP4 was associated with elevated levels of both Bmp and Wnt mRNAs, which appeared to provide sufficient levels of active BMPs and WNTs to promote the nonchondrogenic mesoderm specification. The osteochondrogenic mesoderm expressed PDGFRα, which also expressed genes that mark somite and rostral presomitic mesoderm. A strong WNT signaling was required for generating the mesodermal progeny, while approximately 50- to 100-fold lower concentration of WNT3a was sufficient for specifying axial mes(end)oderm. Thus, depending on the dose and cofactor (BMP), WNT signaling stimulates the generation of different biological activities and specification of different types of mesodermal progeny from ES cells.  相似文献   

13.
The Hippo pathway is an evolutionary conserved pathway that involves cell proliferation, differentiation, apoptosis and organ size regulation. Mst1 and Mst2 are central components of this pathway that are essential for embryonic development, though their role in controlling embryonic stem cells (ES cells) has yet to be exploited. To further understand the Mst1/Mst2 function in ES cell pluripotency and differentiation, we derived Mst1/Mst2 double knockout (Mst-/-) ES cells to completely perturb Hippo signaling. We found that Mst-/- ES cells express higher level of Nanog than wild type ES cells and show differentiation resistance after LIF withdrawal. They also proliferate faster than wild type ES cells. Although Mst-/- ES cells can form embryoid bodies (EBs), their differentiation into tissues of three germ layers is distorted. Intriguingly, Mst-/- ES cells are unable to form teratoma. Mst-/- ES cells can differentiate into mesoderm lineage, but further differentiation to cardiac lineage cells is significantly affected. Microarray analysis revealed that ligands of non-canonical Wnt signaling, which is critical for cardiac progenitor specification, are significantly repressed in Mst-/- EBs. Taken together our results showed that Mst1/Mst2 are required for proper cardiac lineage cell development and teratoma formation.  相似文献   

14.
A central challenge in embryonic stem (ES) cell biology is to understand how to impose direction on primary lineage commitment. In basal culture conditions, the majority of ES cells convert asynchronously into neural cells. However, many cells resist differentiation and others adopt nonneural fates. Mosaic activation of the neural reporter Sox-green fluorescent protein suggests regulation by cell-cell interactions. We detected expression of Notch receptors and ligands in mouse ES cells and investigated the role of this pathway. Genetic manipulation to activate Notch constitutively does not alter the stem cell phenotype. However, upon withdrawal of self-renewal stimuli, differentiation is directed rapidly and exclusively into the neural lineage. Conversely, pharmacological or genetic interference with Notch signalling suppresses the neural fate choice. Notch promotion of neural commitment requires parallel signalling through the fibroblast growth factor receptor. Stromal cells expressing Notch ligand stimulate neural specification of human ES cells, indicating that this is a conserved pathway in pluripotent stem cells. These findings define an unexpected and decisive role for Notch in ES cell fate determination. Limiting activation of endogenous Notch results in heterogeneous lineage commitment. Manipulation of Notch signalling is therefore likely to be a key factor in taking command of ES cell lineage choice.  相似文献   

15.
Pluripotency and self-renewal are two defining characteristics of embryonic stem cells (ES cells). Understanding the underlying molecular mechanism will greatly facilitate the use of ES cells for developmental biology studies, disease modeling, drug discovery, and regenerative medicine (reviewed in 1,2).To expedite the identification and characterization of novel regulators of ES cell maintenance and self-renewal, we developed a fluorescence reporter-based assay to quantitatively measure the self-renewal status in mouse ES cells using the Oct4GiP cells 3. The Oct4GiP cells express the green fluorescent protein (GFP) under the control of the Oct4 gene promoter region 4,5. Oct4 is required for ES cell self-renewal, and is highly expressed in ES cells and quickly down-regulated during differentiation 6,7. As a result, GFP expression and fluorescence in the reporter cells correlates faithfully with the ES cell identity 5, and fluorescence-activated cell sorting (FACS) analysis can be used to closely monitor the self-renewal status of the cells at the single cell level 3,8.Coupled with RNAi, the Oct4GiP reporter assay can be used to quickly identify and study regulators of ES cell maintenance and self-renewal 3,8. Compared to other methods for assaying self-renewal, it is more convenient, sensitive, quantitative, and of lower cost. It can be carried out in 96- or 384-well plates for large-scale studies such as high-throughput screens or genetic epistasis analysis. Finally, by using other lineage-specific reporter ES cell lines, the assay we describe here can also be modified to study fate specification during ES cell differentiation.  相似文献   

16.
Over the past decade, cell transplantation has been recognized as a mean of repairing infarcted myocardium. Both adult stem cells and differentiated cells have yielded encouraging results with regard to engraftment into postinfarction scars. However, these cells now feature serious restrictions. Asan alternative, embryonic stem (ES) cells are particularly attractive, because of their plasticity and the subsequent possibility to drive them towards a cardiomyogenic phenotype after exposure to appropriate growth factors. An additional theoretical advantage of ES cells is their expected immune privilege. In this article, we summarize the findings obtained in cell therapy using ES cells and discuss the molecular mechanisms of cardiac specification of the cells.  相似文献   

17.
The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.  相似文献   

18.
The fibroblast growth factor (FGF) signalling pathway is one of the most ubiquitous in biology. It has diverse roles in development, differentiation and cancer. Embryonic stem (ES) cells are in vitro cell lines capable of differentiating into all the lineages of the conceptus. As such they have the capacity to differentiate into derivatives of all three germ layers and to some extent the extra‐embryonic lineages as well. Given the prominent role of FGF signalling in early embryonic development, we explore the role of this pathway in early ES cell differentiation towards the major lineages of the embryo. As early embryonic differentiation is intricately choreographed at the level of morphogenetic movement, adherent ES cell culture affords a unique opportunity to study the basic steps in early lineage specification in the absence of ever shifting complex in vivo microenvironments. Thus recent experiments in ES cell differentiation are able to pinpoint specific FGF dependent lineage transitions that are difficult to resolve in vivo. Here we review the role of FGF signalling in early development alongside the ES cell data and suggest that FGF dependent signalling via phospho‐Erk activation maybe a major mediator of transitions in lineage specification. J. Cell. Biochem. 110: 10–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The microRNA (miRNA) pathway represents an integral component of the gene regulation circuitry that controls development. In recent years, the role of miRNAs in embryonic stem (ES) cells and mammalian embryogenesis has begun to be explored. A few dozens of miRNAs expressed in mammalian ES cells, either exclusively or nonexclusively, have been cloned. The overall role of miRNAs in ES cells and embryonic development has been assessed by examining the effect of knocking out Dicer, an RNase III enzyme required for miRNA and small interfering RNA biogenesis, as well as DGCR8, a nuclear protein specifically involved in miRNA biogenesis. In addition, the role of a cluster of miRNAs specifically expressed in ES cells, the miR-290-295 group, has been investigated by the knock-out approach. These analyses have revealed the crucial role of miRNAs in ES cell differentiation, lineage specification, and organogenesis, especially neurogenesis and cardiogenesis. Systematic investigation of the role of miRNAs in ES cells and embryos will allow us to find missing pieces of the mosaic of early development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号