首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic diversity is essential for species to sustain their populations and evolutionary potential. In order to develop effective conservation strategies for rare species, it is necessary to understand differences in patterns of genetic diversity between common and rare species. Data about population genetic structure is important to design effective conservation strategies for rare species. In this study, we compared the genetic diversity and population genetic structure of a common species, Rhododendron weyrichii, to those of two rare species, Rhododendron sanctum and Rhododendron amagianum, with different geographic distributions. We analyzed five microsatellite loci in 16 populations of R. weyrichii, 9 populations of R. sanctum, and 6 populations of R. amagianum. As expected, the level of genetic diversity indicated by allelic richness and gene diversity was lower for the rare species R. sanctum than for the common species R. weyrichii. However, there was no statistically significant difference in genetic diversity between R. weyrichii and the other rare species, R. amagianum. Analyses of the isolation-by-distance pattern, neighbor-joining trees, and Bayesian clustering indicated that R. sanctum had a strong population genetic structure whereas R. amagianum exhibited very weak genetic structure among populations and that there was moderate population genetic structure for R. weyrichii. Therefore, the degree and pattern of population genetic structure in each species was unrelated to its rarity and instead merely reflected its geographic distribution.  相似文献   

2.
The genetic diversity and structure of 12 populations of Megaleranthis saniculifolia, a rare endemic Korean plant, were analyzed using 14 allozyme loci coding 10 enzymes and 78 ISSR loci using seven primers. The genetic diversity of M. saniculifolia at the species level was similar to that observed in out-crossing and long-lived perennials, while at the population level, it was significantly low. The high F IS value of many populations as well as homozygote excess occurred relatively evenly in many populations in relation to the Hardy-Weinberg expectation, suggesting that inbreeding was occurring within the M. saniculifolia populations. The degree of genetic differentiation based on the two markers was high, and there was no correlation between geographic and genetic distance. Bayesian cluster analysis did not reveal any remarkable geographic trends. Positive correlations were observed between genetic diversity (H e and h) and population size. Therefore, low genetic diversity within the population and high population differentiation of M. saniculifolia were closely related to the influence of genetic drift, particularly in highly isolated populations. In addition, the fixation of the main alleles at several loci in the opposite direction provided good evidence for genetic drift. The genetic diversity of M. saniculifolia could be compromised if the distribution area or the size of the population were further reduced. In particular, the isolated populations that are fragmented within an area could be at high risk of extinction due to accelerated inbreeding or genetic drift. Considering this, a close monitoring of the population size and of the changes in the genetic structure must be performed. Some practical measures for genetic conservation are also proposed.  相似文献   

3.
The genetic diversity within and among populations of Hepatacodium miconioides collected at three different altitudes in Tiantai Mountain, Zhejiang Province and its relationships to environmental factors were analyzed by random amplified polymorphic DNA (RAPD) technique. Amplification using 12 random primers of 60 plants and 122 repetitive loci were produced. The percentage of polymorphic loci of three populations ranged from 18.85% to 23.77% with an average of 21.86%, indicating the relatively low genetic diversity of H. miconioides. The average Shannon index of phenotypic diversity (0.1329) and Nei index (0.0925) within populations were relatively low. A distinct genetic differentiation existed among populations of H. miconioides in spite of the relatively small geographical distribution. The average genetic diversity within populations of H. miconioides accounted for 33.58% of the total genetic diversity while the genetic diversity among populations accounted for 66.42% as estimated by the Shannon index of phenotypic diversity, The genetic differentiation among populations of H. miconioides was 0.6546, as estimated by Nei index. The gene flow estimated from G ST was only 0.2656 and it indicated that gene flow among populations of H. miconioides was relatively low. The mean value of the genetic identity among populations of H. miconioides was 0.7126 and the average of genetic distance of H. miconioides was 0.3412. The genetic identity between populations at the elevation of 990 m and at the elevation of 780 m was the highest. The genetic identity between population at the elevation 500 m and other two populations was relatively low. The correlation analysis showed that the genetic diversity within populations was significantly related with the soil total nitrogen.  相似文献   

4.
Abies chensiensis Tieghem and Abies fargesii Franchet are two closely related tree species of Pinaceae endemic to China. A. chensiensis is usually found scattered in small forest fragments, whereas A. fargesii is a dominant member of coniferous forest. To evaluate the genetic effect of fragmentation on A. chensiensis, a total of 24 populations were sampled from the whole distribution of the two species. Seven nuclear microsatellite loci were employed to analyze comparatively the genetic diversity and population genetic differentiation. Both A. chensiensis and A. fargesii have high level within-population genetic diversity and low inter-population genetic differentiation. Low microsatellite differentiation (2.1%) between A. fargesii and A. chensiensis was observed. But microsatellite marker was able to discriminate most populations of these two species. Compared to A. fargesii, A. chensiensi has lower allelic diversity and higher genetic differentiation among populations. It suggested the existence of negative genetic impacts of habitat fragmentation on A. chensiensis.  相似文献   

5.
Analysis of levels and patterns of genetic variation in a rare species is important for determining whether genetic factors associated with small population size, such as genetic drift or inbreeding, may be negatively affecting a species. In this study, we compared estimates of genetic diversity and patterns of population genetic structure in a rare cliff endemic, Erigeron lemmonii, to those of a widespread congener, E. arisolius. Our goals were to assess whether rarity and small population size have negatively affected levels of genetic diversity in E. lemmonii and to identify genetic threats that may limit the ability of E. lemmonii to persist. Levels of observed and expected heterozygosity and allelic richness in E. lemmonii were approximately 60 % of those found in E. arisolius. After correcting for null alleles, inbreeding coefficients in both species of Erigeron were very small, suggesting that both species are highly outcrossing and may demonstrate self-incompatibility. Patterns of genetic structure in both species revealed almost no population substructuring, indicating that widespread gene flow is occurring within each species. Because we found no evidence for inbreeding or a genetic bottleneck in E. lemmonii, it is likely that the species’ lower genetic diversity may be the result of genetic drift. Because E. lemmoni exists in a single population, no other populations exist to bolster population size or genetic diversity in the event of declines; thus, conservation efforts should focus on seed collection from as many individuals as possible to protect against possible future losses of genetic diversity. We also recommend continued monitoring of both population size and genetic diversity in E. lemmonii to ensure the species’ long-term persistence and viability.  相似文献   

6.
Understanding the extent and partitioning of crop genetic diversity is necessary for conserving and utilizing their genetic potentials for breeding. In the present study, fluorescence-labeled amplified fragment length polymorphism markers were used to characterize the genetic diversity and relationships of 79 cultivars and also of 122 F1 hybrids which resulted from six kiwifruit interploid crosses. A high level of mean genetic diversity was detected (Hj > 0.22) for all cultivars investigated, without significant differences among diploids (2x), tetraploids (4x), and hexaploids (6x). This suggested that no significant genetic erosion occurred in these cultivars, which were directly selected from natural resources or created from crosses. The Unweighted Pair Group Method with Arithmetic Mean analysis of the genetic dissimilarity between cultivars showed three main groups mostly based on their three ploidy levels. Among these, the red-fleshed cultivars which were originally derived from ‘Hongyang’ clustered into one subgroup of group I, suggesting their unique genetic background despite they were marked as different cultivars used in the current kiwifruit industry. By analyzing the genetic variation of hybrids with variable ploidy levels, our genetic analyses further revealed that interploid crosses can increase the genetic diversity of F1 offsprings, especially from the parental combinations of 6x–2x and 6x–4x, in which both parents showed significant differences in morphology and genetic backgrounds. Based on these findings, strategies were proposed for the conservation and utilization of the current kiwifruit genetic resources for future breeding programs.  相似文献   

7.
RAPD markers were used to detect genetic diversity and population genetic differentiation of Hippophae rhamnoides ssp. yunnanensis, a sea buckthorn endemic to the Qinghai-Tibet plateau. The genetic parameters of percentage of polymorphic bands (92.86%), Nei’s gene diversity (h, 0.255), and Shannon’s index (I, 0.397) indicated high genetic diversity in this subspecies. The subpopulation differentiation suggested that 45.9% of genetic variation was among populations. High genetic differentiation among populations was also detected using AMOVA (47.02%). The main factors responsible for high genetic differentiation are probably related to natural geographic barriers among populations, gene drift, and limited gene flow caused by restricted pollen flow and seed flow. A Mantel test indicated that geographic distances were significantly correlated with genetic distances. The UPGMA phenogram based on Nei’s unbiased genetic distances and the result of three-dimensional model plots performed by principal coordinate analysis also supported the correlation. Altitude, however, did not have any clear effect on genetic differentiation.  相似文献   

8.
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.  相似文献   

9.
The family Fagaceae includes several species and presents huge genetic variability. In the last two decades, several genetic studies about phylogenetics and genetic diversity of Fagaceae have emerged. ISSR markers were used to evaluate the genetic diversity of 26 species of Fagaceae belonging to the genera Castanea, Fagus and Quercus. Among several primers tested, 17 were selected for the evaluation of diversity and estimation of genetic relationships. A total of 371 ISSR markers were produced and each primer revealed high polymorphism. Specific ISSR markers for the Quercus infrageneric groups were amplified. ISSRs proved to be a reliable tool for the discrimination of the analyzed species per genus, infrageneric group and/or ecological origin.  相似文献   

10.
Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish and four discrete genetic groups exist within the species, suggesting that the species designation requires revision. The present study determined the taxonomic status of the four genetic groups of F. columnare using polyphasic and phylogenomic approaches and included five representative isolates from each genetic group (including type strain ATCC 23463T; genetic group 1). 16S rRNA gene sequence analysis revealed genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT shared less than <98.8 % sequence identity to F. columnare ATCC 23463T. Phylogenetic analyses of 16S rRNA and gyrB genes using different methodologies demonstrated the four genetic groups formed well-supported and distinct clades within the genus Flavobacterium. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) values between F. columnare ATCC 23463T, genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT were less than 90.84% and 42.7%, respectively. Biochemical and physiological characteristics were similar among the four genetic groups; however, quantitative differences in fatty acid profiles were detected and MALDI-TOF analyses demonstrated numerous distinguishing peaks unique to each genetic group. Chemotaxonomic, MALDI-TOF characterization and ANI/GGDC calculations afforded differentiation between the genetic groups, indicating each group is a discrete species. Herein, the names F. covae sp. nov. (AL-02-36T), F. davisii sp. nov. (90-106T), and F. oreochromis sp. nov. (Costa Rica 04-02-TNT) are proposed to represent genetic groups 2, 3, and 4, respectively.  相似文献   

11.
Advances in DNA-based genetic markers provide the essential tools in measurement of genetic diversity relating to the evolution, biogeography, and systematics of red algae by exploiting genetic variation in the entire genome of organisms. The understanding of genetic diversity in Gracilaria changii (Gracilariaceae, Rhodophyta) will provide valuable information for conservation, plant breeding management, and strain selection for cultivation. However, information of intraspecific genetic variation is still rudimentary. In this study, two mitochondrial encoded markers, cytochrome oxidase subunit 1 (cox1) and intergenic spacer between the cytochrome oxidase subunits 2 and 3 (cox2-3 spacer) were used to investigate genetic diversity in 40 individuals of G. changii collected from 11 different geographically distinct populations from Peninsular Malaysia. Seven distinct mitochondrial haplotypes were identified with the cox1 gene and three mitochondrial haplotypes with the cox2-3 spacer. Intraspecific nucleotide differences ranged from 0 to 6 bp for the cox1 and 0–4 bp for the cox2-3 spacer, respectively. This is the first report comparing the suitability of mitochondrial markers of the cox1 gene and the cox2-3 spacer for genetic diversity studies on G. changii. The present study showed that the cox1 gene is a potential molecular marker to infer intraspecific genetic variation in red macroalgae. The cox1 marker is more variable compared to the cox2-3 spacer and revealed genetic variation and phylogeographic structure for this ecologically and economically important species.  相似文献   

12.
The wild resources of Gastrodia elata are currently threatened with extinction due to over-harvesting because of their high medicinal value. Genetic diversity plays a key role in the survival of endangered orchid species. In this study we investigated the genetic pattern in eight microsatellite loci within eight G. elata populations from central China. Compared with the other orchids, G. elata showed a low level of genetic variation within populations (HE = 0.356–0.622). The main factors responsible for the genetic pattern were the plant's inbreeding system due to mating within clone patches, and the genetic bottlenecks and genetic drift caused by a long-history over-collecting. The significant heterozygote deficit was detected in all the populations. The F statistics calculated by different approaches consistently revealed a clear genetic differentiation among populations, contributing about 20% of the total gene diversity. The results are discussed in relation to both in situ and ex situ conservation efforts of the species. The populations with a high level of genetic diversity or with great genetic distinction were identified, which should be a high priority for conservation managers.  相似文献   

13.
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations.  相似文献   

14.
Extracts of the medicinal plant Palicourea rigida Kunth, popularly known as douradinha, are widely used for treating urinary tract disorders. Unfortunately, nowadays this is one of the species endemic to Brazilian Cerrado that is at greatest risk of extinction.The aim of the this work was to use AFLP molecular markers to determine the genetic structure and diversity of eight natural populations of P. rigida and to associate their genetic characteristics with loganin production in order to obtain provide relevant information to promote programs for the conservation of this valuable medicinal plant.A total of 120 polymorphic bands were scored and higher proportion of genetic diversity was found in inter-populations (64%) rather than in intra-populations (36%). Fst value was found to be significantly greater than zero (0.3601), demonstrating the complex genetic structure of P. rigida populations. Accessions collected from Cristalina, GO, showed higher percentage of polymorphic loci (65.5%) and the highest genetic diversity. Analysis of Molecular variance (AMOVA) demonstrated 63.9% of intra-population genetic variation. The lowest genetic variability was detected among accessions from the population found in Sacramento, MG. No spatial standard was observed for P. rigida population, suggesting a partially isolated island model. It was observed a minor but significant positive correlation (r = 0.22) between chemical and genetic matrices. The association between chemical and genetic data indicated that environmental factors promoted the loganin production in populations growing in Luziânia, GO, and therefore accessions from those populations should be considered as prime material for initiating the conservation process of P. rigida.  相似文献   

15.
Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F ST < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.  相似文献   

16.
The threadsail filefish Stephanolepis cirrhifer is one of the most important commercial fish resources in Korea. However, its natural populations have declined drastically over the last several decades. To investigate the genetic characteristics of the threadsail filefish for conservation and management purposes, its genetic variation was analyzed in Korean fishing grounds using 11 microsatellite loci. All populations showed moderate genetic diversity (mean number of alleles (NA) = 8.6, expected heterozygosity (He) = 0.73), representing a slightly lower level of genetic variability than other congeneric species. The presence of a weak genetic population substructure was detected (FST = 0.023, RST = 0.030, P < 0.001), but this substructure did not feature significant isolation based on the distance between populations. This differentiation may be primarily attributable to genetic differences between populations from Geomundo and other localities, based on relative low level of gene flow, a high level of pairwise FST and RST or the position of this population in a phylogenetic tree. An analysis of molecular variance (AMOVA) also revealed a greater part of the variation within the population and genetic differentiation among the samples analyzed and identified two genetic clusters. The possibility of a recent genetic bottleneck was observed in some populations of S. cirrhifer. Given the prevailing ocean currents and the intensity of threadsail filefish harvesting activities in Korea, the possibility that human harvest and stock enhancement activities may have partially contributed to our detected genetic pattern cannot be excluded. Management strategies that take these findings into account might lower the risk of harmful genetic change in the species.  相似文献   

17.
Seven isozyme systems (Sod, 6-Pgd, Me, Est, Skdh, Fdh and Gdh) representing nine loci were used to study the genetic diversity of nine faba bean populations. Seven loci revealed polymorphic bands and showed the same quaternary structure as that found in several species. They revealed a high number of phenotypes. Indeed, from 3 to 9 phenotypes per locus were investigated in this study. The percentage of polymorphic loci (P = 59.3 %) was higher than that mentioned in the autogamous species (P = 20.3 %) and less than the optimum (P=96 %) indicated for allogamous plants. Total genetic diversity (H T) and within population genetic diversity (H S) were estimated with the isozyme markers. The contribution of among population genetic diversity (D ST) to total genetic diversity was 22%. Enzyme markers pointed out an average inbreeding level for whole population (F IT) and within population (F IS). Within population genetic diversity represents 78% of total diversity. Intra-population genetic diversity (H S = 0.206) was ranged with the respect of allogamous species and was clearly higher than that of among population genetic diversity (D ST = 0.057) indicating an out-crossing predominance in the studied populations. The expected heterozygosity was higher than that observed heterozygosity at the allogamous species was confirmed in this study. Although, the mean estimated gene flow was less than 1(Nm=0.814), the dendrogram based on Nei’s genetic distance of the 9 populations using UPGMA method showed some genetic drift between populations.  相似文献   

18.
This study provides the first genetic characterization of the gypsy moth from China ( Lymantria dispar ), one of the most recognized pests of forests and ornamental trees in the world. We assessed genetic diversity and structure in eight geographic populations of gypsy moths from China using five polymorphic Inter simple sequence repeat markers, which produced reproducible banding patterns. We observed 102 polymorphic loci across the 176 individuals sampled. Overall genetic diversity (Nei’s, H) was 0.2357, while the mean genetic diversity within geographic populations was 0.1845 ± 0.0150. The observed genetic distance among the eight populations ranged from 0.0432 to 0.1034. Clustering analysis (using an unweighted pair-group method with arithmetic mean and multidimensional scaling), revealed strong concordance between the strength of genetic relationships among populations and their geographic proximity. Analysis of molecular variance demonstrated that 25.43% of the total variability (F ST = 0.2543, P < 0.001) was attributable to variation among geographic populations. The results of our analyses investigating the degree of polymorphism, genetic diversity (Nei’s and Shannon) and genetic structure, suggest that individuals from Hebei may be better able to adapt to different environments and to disperse to new habitats. This study provides crucial genetic information needed to assess the distribution and population dynamics of this important pest species of global concern.  相似文献   

19.
A new approach to genetic coding theory, the generalized genetic code (GGC), is presented. It is shown how the GGC reunifies ambiguous codon assignments within the standard genetic code, thereby redefining genetic code universality in a modified form. An extensive survey of ambiguous codings (> 100 assignments) is presented as a critical test of the GGC and all assignments are successfully analyzed within the GGC Finally, the operative nature of biological contexts is investigated and discussed.  相似文献   

20.
The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this “residual” genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic structure in these organisms that should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号