首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Popping expansion volume (PEV) in popcorn (Zea mays L.) is a distinct heritable character and defined as the ratio of the volume after popping to the volume before popping. PEV is quantitatively inherited and 3–4 genes/quantitative trait loci (QTLs) have been implicated. In the present study, we have dissected the quantitative PEV into two component traits, viz., flake volume (FV) and percent unpopped kernels (UPK), and mapped QTLs using SSR markers for all three traits with 194 F3 families derived from a popcorn (A-1-6) × flint corn (V273) cross. Heritability (broad sense) estimates for PEV, FV and UPK based on F3 mean bases were 0.72, 0.54 and 0.68, respectively. The QTL analyses for the three traits based on combined environment data were performed by composite interval mapping using QTL cartographer. Four QTLs were identified for PEV on chromosomes 1, 3, 8 and 10, which together explained 62% of the phenotypic variance (σ2p). Four QTLs were found on chromosomes 1, 5, 9 and 10 for FV (explaining 44% of σ2p) and five QTLs for UPK on chromosomes 1, 3, 4, 5 and 9 (explaining 57% of σ2p). The relative efficiency estimates of marker-based selection in comparison to phenotypic selection for PEV (1.10), FV (1.22) and UPK (1.11) indicated that marker-based selection could be relatively more efficient. The QTL on chromosome 1S for PEV was found to be most significant, where QTLs for hard endosperm starch concentration had been detected earlier. A. Kumar and H.S. Rao contributed equally to this research work.  相似文献   

2.
爆裂玉米膨化倍数QTL分析及其环境稳定性   总被引:8,自引:0,他引:8  
膨化倍数是爆裂玉米最重要的品质指标。以普通玉米自交系丹232和爆裂玉米自交系N04杂交构建的259个F2:3家系为定位群体,采用完全随机区组设计在郑州春播和夏播条件下测定了膨化倍数。利用覆盖玉米10条染色体的183对多态性分子标记构建连锁图,采用复合区间作图法(CIM)进行QTL定位分析,采用多区间作图法(MIM)分析定位QTL间的互作效应。共检测出22个QTLs,单个QTL的贡献率为3.07%~12.84%,累计贡献率为66.46%和51.90%。其中5个QTLs在两种环境条件下均检测到,3个QTLs(qPF-6-1、qPF-8-1和qPF-1-3)的贡献率大于10%。大多数QTLs的加性效应值大于显性效应,表现为加性、部分显性、显性和超显性基因作用方式的QTLs数目在两种环境下分别为4、5、0、2和2、5、2、2。仅6对(占2.60%)QTLs或标记区间存在显著互作效应,表现为AA、DA或DD互作方式。  相似文献   

3.
Popping fold (PF) is the most important quality trait in popcorn. In this study, a total of 259 F2:3 families, derived from the cross between a dent corn inbred Dan232 and a popcorn inbred N04, were evaluated for their popping folds in replicated experiments under two environments. Of 613 simple sequence repeat (SSR) primer pairs screened, 183 pairs were selected to construct a genetic linkage map with the genetic distance of 1 762.2 cM (centimorgan) and on average 9.63 cM every marker. Quantative trait loci (QTL) were identified, and their genetic effects were estimated using CIM (composite interval mapping) method. The interactions among QTLs detected were calculated using MIM (multiple interval mapping) method. In all, 22 QTLs were detected, and only 5 of them were common under two environments. Contribution to phenotypic variation of a single QTL varied from 3.07% to 12.84%, and total contributions of all QTLs under two environments were 66.46% and 51.90%, respectively. Three QTLs (qPF-6-1, qPF-8-1 and qPF-1-3) with more than 10% contributions were observed. The additive effects were larger than dominant effects for most QTLs. The amount of QTLs showing additive, partially dominant, dominant and over-dominant effects were 4, 5, 0, 2 in spring sowing and 2, 5, 2, 2 in summer sowing, respectively. There were only 2.60% pairs of QTLs or maker intervals expressing AA, DA or DD interactions.  相似文献   

4.
Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F2:3 lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F2:3 population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.  相似文献   

5.
ABSTRACT: BACKGROUND: Nuna bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuna bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuna bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. RESULTS: A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3 % of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. CONCLUSIONS: The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuna bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop.  相似文献   

6.
Specific traits are an important consideration in plant breeding. In popcorn, inferior agronomic traits could be improved using dent or flint corn backcrossed with popcorn. In this study, we used advanced backcross quantitative trait locus (AB-QTL) analysis to identify trait-improving QTL alleles from a dent maize inbred Dan232, and compared the detection of QTL in the BC2S1 population with QTL results using F2:3 families of the same population. Two hundred and twenty BC2S1 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for nine plant traits in replicated field trials under two environments. Using composite interval mapping (CIM), a total of 28 significant QTL were detected, and of these, 23 (82.14%) had favorable alleles contributed by the dent corn parent Dan232. Nine QTL (32.14%) detected in the BC2S1 population were also located in or near the same chromosome intervals in the F2:3 population. All of the favorable QTL alleles from Dan232 could be used in marker-assisted selection (MAS) to improve the respective plant traits in popcorn breeding. In addition, their near isogenic lines (QTL-NILs) could be obtained through selfing or another 1–2 backcross with N04. Also, N04 improved for the studied plant traits could be developed from the BC2S1 families used in this study. This study demonstrated that the AB-QTL method can be applied to identify favorable QTL from dent corn inbred in popcorn breeding and, once identified, the alleles could be used in marker-assisted selection to improve the respective plant traits.  相似文献   

7.
Plant height (PH) is one of the most important traits in maize breeding programs. In popcorn, inferior plant traits can be improved with the dent/flint corn germplasm. In the current study, a total of 259 F2:3 families, developed from a cross between a dent corn inbred and a popcorn inbred, were evaluated for 4 PH traits. Quantitative trait loci (QTLs) for each trait were detected using composite interval mapping methods. In addition, genetic interrelationships were investigated using multiple-trait joint analysis for PH with ear height (EH), and for PH with top height (TH). In total, 6, 5, 2, and 6 QTLs were identified for PH, EH, TH, and TH/PH in single-trait analysis, respectively. Joint-analysis data suggest a strong and complex genetic relationship between PH and EH, and between PH and EH, with no QTLs controlling any single trait independently. In addition, 4 kinds of QTLs detected were classified as closely linked QTLs, pleiotropic QTLs, QTLs with opposite effects, and additional QTLs. It was, consequently, difficult to improve lodge resistance through selection on any individual PH trait. The current study demonstrates that multiple-trait joint analysis not only identified additional QTLs, but also revealed the genetic relationship among different highly correlated traits at the molecular level.  相似文献   

8.
爆裂玉米胚乳数量性状的遗传研究   总被引:7,自引:1,他引:6  
采用三倍体胚乳种子遗传模型及其分析方法,研究了4个爆裂玉米膨爆特性的胚乳直接效应、母体效应和细胞质效应。结果表明,百粒重、膨化体积的遗传同时由3套遗传体系所控制,百粒重的细胞质、膨化体积的母体和细胞质遗传率较高。爆花率和膨化倍数受胚乳和母体2套遗传体系的影响,且遗传率相近。爆花率和膨化倍数的直接和母体杂种优势均为负值。要组配出优良爆裂玉米杂交种,必须首先选育出膨爆特性突出的自交系,同时还要注意不同自交系的恰当组配。在6个供试自交系中,必须首先选育出膨爆特性突出的自交系,同时还要注意不同自交系的恰当组配。在6个供试自交系中,P3,P4适宜用作母本,P5则适宜作父本。  相似文献   

9.
A quantitative trait loci (QTL) analysis for androgenetic capability has been conducted on three different crosses in maize, including very high and nonresponding lines for androgenesis. The doubled haploid lines derived by anther culture from the crosses DH5 x DH7, A188 x DH7, and R6 x DH99 showed a range of 0-70%, 0-40%, and 0-50% androgenetic responding anthers, respectively. The genotypic heritability of means for this trait is close to 0.90 for A188 x DH7 and 0.78 for R6 x DH99. The QTL analysis involved in each population the mapping of more than 100 loci covering a large part of the genome with reasonably spaced markers averaging 12 cM. Different measurements describing the androgenetic process were studied: AC, percentage of responding anthers; ELS, number of androgenetic embryos produced per 100 plated anthers; PLE, number of plantlets regenerated per 100 embryos; PLA, number of plantlets per 100 plated anthers. In each cross, three to four QTLs were found for AC, explaining 30-40% of the phenotypic variation. The QTL detected for PLA was also strong QTL for AC or ELS. This agrees with the observation that these last two traits are good predictors for final plantlet yield. The QTLs found were specific, although the same line DH7 was used in two crosses and DH99 derived from DH5 and DH7 in the third cross. These results suggest that the transfer of the androgenetic capabilities in elite germplasm will still involve a phenotypic evaluation of the androgenetic performances. A backcross-assisted selection based only on the genotype at the QTL is probably possible but only within the crosses used for this QTL analysis.  相似文献   

10.
利用三倍体胚乳遗传模型定位玉米籽粒淀粉含量QTL   总被引:2,自引:0,他引:2  
董永彬  李玉玲  牛素贞 《遗传》2006,28(11):1401-1406
在两种环境条件下种植以普通玉米自交系丹232和爆裂玉米自交系N04为亲本构建的259个F2:3家系群体, 采用SSR标记构建了包含183个标记的玉米遗传连锁图谱, 覆盖玉米基因组1 762.2 cM, 标记间平均距离为9.6 cM。利用三倍体胚乳遗传模型和区间作图方法对籽粒淀粉含量进行了QTL定位和遗传效应分析, 春、夏播条件下共检测到10个QTL, 春播条件下检测到的QTL在夏播均被检测到, 分别位于第1、3、4、5、7染色体上,可解释淀粉的表型总变异分别为36.84%和72.65%, 单个QTL解释表型变异介于4.74%~11.26%。在检测到的 QTL中, 有2个QTL的遗传作用方式在春播均表现为超显性, 而夏播分别为加性和部分显性; 其他2个为加性, 1个为部分显性, 5个为超显性。3个QTL的增效基因来自丹232, 其余QTL的增效基因均来自N04。  相似文献   

11.
Study and characterization of a novel functional food: purple popcorn   总被引:1,自引:0,他引:1  
Many phytonutrients seem to be able to combat the effects of oxidants which may lead to chronic diseases. Among them, anthocyanins have been studied for a long time, and different types of functional foods rich in these pigments are already available on the market. In particular, wine, berries and various cereals have already aroused consumers’ awareness, and in this context we propose a new and attractive healthy food: purple popcorn. Popcorn is the most popular American snack, now well known all over the world. A corn rich in anthocyanins, suitable to be transformed into a snack, could help to introduce healthy antioxidant compounds into the diet of many people, contributing to the prevention of chronic diseases. In this work we developed a coloured popcorn variety rich in anthocyanins (about 66 mg/100 g, mainly cyanidin) by a recurrent selection scheme, with the aim of obtaining a healthier snack. The selection was based on some quality characteristics such as anthocyanin content, popping ability and the popping expansion volume. The purple popcorn obtained was further analyzed by high pressure liquid chromatography and 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, before and after microwave treatment. The results obtained showed that, even though the microwave treatment reduced the anthocyanin content to about 46 %, the remaining anthocyanins exhibited a marked antioxidant capacity compared to the colourless control. Finally taste perception was also checked between coloured and uncoloured popcorn, and no difference was perceived.  相似文献   

12.
Improving grain quality, which is composed primarily of the appearance of the grain and its cooking and milling attributes, is a major objective of many rice-producing areas in China. In the present study, we conducted a marker-based genetic analysis of the appearance and milling quality of rice (Oryza sativa L.) grains using a doubled-haploid population derived from a cross between the indica inbred Zhenshan 97 strain and the japonica inbred Wuyujing 2 strain. Quantitative trait locus (QTL) analysis using a mixed linear model approach revealed that the traits investigated were affected by one to seven QTLs that individually explained 4.0%-30.7% of the phenotypic variation. Cumulatively, the QTL for each trait explained from 12.9% to 61.4% of the phenotypic variation. Some QTLs tended to have a pleiotropic or location-linked association as a cause of the observed phenotypic correlations between different traits. Improvement of the characteristics of grain appearance and grain weight, as well as an improvement in the milling quality of rice grains, would be expected by a recombination of different QTLs using marker-assisted selection.  相似文献   

13.
We studied the efficiency of recurrent selection based solely on marker genotypes (marker-based selection), in order to increase favourable allele frequency at 50 previously detected quantitative trait loci (QTLs). Two selection procedures were investigated, using computer simulations: (1) Truncation Selection (MTS), in which individuals are ranked based on marker score, and best individuals are selected for recombination; and (2) QTL Complementation Selection (QCS), in which individuals are selected such that their QTL composition complements those individuals already selected. Provided QTL locations are accurate, marker-based selection with a population size of 200 was very effective in rapidly increasing frequencies of favourable QTL alleles. QCS methods were more effective than MTS for improving the mean frequency and fixation of favourable QTL alleles. Marker-based selection was not very sensitive to a reduction in population size, and appears valuable to optimize the use of molecular markers in recurrent selection programmes.  相似文献   

14.
Fusarium head blight (FHB) is one of the most important wheat diseases that causes yield and quality losses as well as contamination with deoxynivalenol (DON). This study aimed for marker-based introduction of three previously mapped QTLs from two German winter wheat resistance sources into an elite background unrelated to the mapping population. A double cross (DC) served as initial population that combined two resistance donor-QTL alleles from "Dream" (Qfhs.lfl-6AL, Qfhs.lfl-7BS) and one donor-QTL allele from "G16-92" on chromosome 2BL with two high yielding, susceptible elite winter wheats ("Brando", "LP235.1"). The initial population of 600 DC-derived F(1) lines was selected with SSR markers for the respective QTLs. After two marker-selection steps, each of eight marker classes was represented by 9-22 lines possessing the respective donor-QTL allele or all possible combinations thereof in the homozygous state. The effect of the QTLs was estimated by field tests at four locations inoculated with Fusarium culmorum. Resistance was measured as the mean of multiple FHB ratings (0-100%). Marker classes incorporating only one QTL were not significantly more resistant than the class without any QTL, the combination of two donor-QTL alleles reduced FHB significantly. On average, lines with Qfhs.lfl-6AL were significantly taller than lines without this QTL. A considerable variation for FHB resistance was found in all marker classes. Marker-based introduction of two QTLs enhanced mean FHB rating by about 40 percentage points, the selected plants, however, were, on average, significantly taller. Both findings strongly support a phenotypic selection following after marker-based introduction of effective QTLs.  相似文献   

15.
Cross-incompatibility genes known as gametophyte factors (ga) are numerous in maize. Many popcorn strains carry these genes and cannot be fertilized by pollen of dent and flint maize strains although the reciprocal crosses are successful. A Chinese popcorn strain SDGa25 carries the strongest allele of Ga1 (Ga1-S) and the majority of Chinese dent and flint maize germplasm are incompatible with SDGa25. The incompatibility is due to pollen tube growth obstruction 2 h after pollination. The pollen tube is arrested in the silk segment 5.5 cm distal to the pollination area and never reaches the ovule. The Ga1-S carried by SDGa25 behaves as a single dominant gene. This gene was mapped between markers SD3 on BAC AC200747 0.827 cM apart on the telomere side and SD12 on BAC AC204382 0.709 cM apart on the centromere side. The genetic region mapped spanning the Ga1-S locus was estimated to be 1.5 cM in length and the physical distance is 2,056,343 bp on ctg156 based on the B73 RefGen_v2 sequence. Gametophyte factors influence gene flow direction and the strongest Ga1-S allele is useful for isolating one category of commercial varieties from another. The eight tightly linked markers to Ga1-S developed in this study would greatly improve marker-assisted introgression efficiency and the fine mapping would facilitate the isolation of the Ga1-S.  相似文献   

16.
Maysin, a C-glycosylflavone in maize silk, has insecticidal activity against corn earworm, Helicoverpa zea (Boddie), larvae. Sweet corn, Zea mays L., is a vulnerable crop to ear-feeding insects and requires pesticide protection from ear damage. This study was conducted to identify maize chromosome regions associated with silk maysin concentration and eventually to transfer and develop high silk maysin sweet corn lines with marker-assisted selection (MAS). Using an F2 population derived from SC102 (high maysin dent corn) and B31857 (low maysin sh2 sweet corn), we detected two major quantitative trait loci (QTL). It was estimated that 25.6% of the silk maysin variance was associated with segregation in the genomic region of npi286 (flanking to p1) on chromosome 1S. We also demonstrated that a1 on chromosome 3L had major contribution to silk maysin (accounted for 15.7% of the variance). Locus a1 has a recessive gene action for high maysin with the presence of functional p1 allele. Markers umc66a (near c2) and umc105a on chromosome 9S also were detected in this analysis with minor contribution. A multiple-locus model, which included npi286, a1, csu3 (Bin 1.05), umc245 (Bin 7.05), agrr21 (Bin 8.09), umc105a, and the epistatic interactions npi286 x a1, a1 x agrr21, csu3 x umc245, and umc105a x umc245, accounted for 76.3% of the total silk maysin variance. Tester crosses showed that at the a1 locus, SC102 has functional A1 alleles and B31857 has homozygous recessive a1 alleles. Individuals of (SC102 x B31857) x B31857 were examined with MAS and plants with p1 allele from SC102 and homozygous a1 alleles from B31857 had consistent high silk maysin. Marker-assisted selection seems to be a suitable method to transfer silk maysin to sweet corn lines to reduce pesticide application.  相似文献   

17.
Quantitative trait locus (QTL) analysis for tuber dormancy was performed in a diploid potato population (TRP133) consisting of 110 individuals. The female parent was a hybrid between haploid S. tuberosum (2x) and S. chacoense, while the male parent was a S. phureja clone. The population was characterized for ten isozyme loci, 44 restriction fragment length polymorphisms (RFLPs) and 63 random amplified polymorphic DNAs (RAPDs). Eighty-seven of these loci segregating from the female parent were utilized to develop a linkage map that comprised 10 of the 12 chromosomes in the genome. Dormancy, as measured by days-to-sprouting after harvest, ranged from 10 to 90 days, with a mean of 19 days. QTLs were mapped by conducting one-way analyses of variance for each marker locus by dormancy combination. Twenty-two markers had a significant association with dormancy, identifying six putative QTLs localized on each of chromosomes 2, 3, 4, 5, 7 and 8. The QTL with the strongest effect on dormancy was detected on chromosome 7. A multilocus model was developed using the locus with highest R2 value in each QTL. This model explained 57.5% of the phenotypic variation for dormancy. Seven percent of possible epistatic interactions among significant markers were significant when tested through two-way analyses of variance. When these were included in the main-effects model, it explained 72.1% of the phenotypic variation for dormancy. QTL analysis in potato, the methodology to transfer traits and interactions into the 4x level, and QTLs of value for marker-assisted selection, are discussed.  相似文献   

18.
QTL mapping for plant-height traits has not been hitherto reported in high-oil maize. A high-oil maize inbred ‘GY220’ was crossed with two dent maize inbreds (‘8984’ and ‘8622’) to generate two connected F2:3 populations. Four plant-height traits were evaluated in 284 and 265 F2:3 families. Single-trait QTL mapping and multiple-trait joint QTL mapping was used to detect QTLs for the traits and the genetic relationship between plant height (PH) and two other plant-height traits. A total of 28 QTLs and 12 pairs of digenic interactions among detected QTLs for four traits were detected in the two F2:3 families. Only one marker was shared between the two populations. Joint analysis of PH with ear height (EH) and PH with top height (TH) detected 32 additional QTLs. Our results showed that QTL detection for PH was dependent on the genetic background of dent corn inbreds. Multiple-trait joint QTL analysis could increase the number of detected QTLs.  相似文献   

19.
L Ollivier 《Genetics》1998,148(3):1367
Using the concept of conditional coancestry, given observed markers, an explicit expression of the accuracy of marker-based selection is derived in situations of linkage equilibrium between markers and quantitative trait loci (QTL), for the general case of full-sib families nested within half-sib families. Such a selection scheme is rather inaccurate for moderate values of family sizes and QTL variance, and the accuracies predicted for linkage disequilibrium can never be reached. The result is used to predict the accuracy of marker-assisted combined selection (MACS) and is shown to agree with previous MACS results obtained by simulation of a best linear unbiased prediction animal model. Low gains in accuracy are generally to be expected compared to standard combined selection. The maximum gain, assuming infinite family size and all QTLs marked, is about 50%.  相似文献   

20.
The development of an oil palm RFLP marker map has enabled marker-based QTL mapping studies to be undertaken. Information from 153 RFLP markers was used in combination with phenotypic data from an F2 population to estimate the position and effects of quantitative trait loci (QTLs) for traits including yield of fruit and its components and measures of vegetative growth. The mapping population consisted of 84 palms segregating for the major gene influencing shell thickness. Marker data were analysed to produce a linkage map consisting of 22 linkage groups. The QTL mapping analysis was carried out by interval mapping and single-marker analysis for the unlinked markers; significance thresholds were generated by permutation. Using both single-marker and interval-mapping analysis significant marker associated QTL effects were found for 11 of the 13 traits analysed. The results of interval-mapping analysis of fruit weight, petiole cross section and rachis length, and ratios of shell:fruit, mesocarp:fruit and kernel:fruit indicated significant (P<0.05) QTLs at the genome-wide threshold. The putative QTLs were associated with between 8.2% and 44.0% of the phenotypic variation, with an average of 27% for the single-marker analysis and 19% for the interval-mapping analysis. The higher percentage of phenotypic variation explained in the single-marker analysis, when compared to the interval-mapping analysis, is likely to be due to the lower stringency associated with the single-marker analysis. Large dominance deviations were associated with a sizeable proportion of the putative QTLs. The ultimate objective of mapping QTLs in commercial populations is to utilise novel breeding strategies such as marker-assisted selection (MAS). The potential impact of MAS in oil palm breeding programmes is discussed. Received: 26 June 2000 / Accepted: 24 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号