首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular superoxide dismutase in the vascular system of mammals.   总被引:11,自引:3,他引:8       下载免费PDF全文
NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.  相似文献   

2.
Ligand stimulation of the platelet-derived growth factor receptor (PDGF-R) results in rapid activation of the receptor tyrosine kinase, stimulation of phosphoinositide hydrolysis, an increase in intracellular free Ca2+ concentration ([Ca2+]i), and, ultimately, cellular proliferation. In a previous study, we demonstrated that staurosporine, a known inhibitor of protein kinase C, blocked PDGF-induced [Ca2+]i increases in Swiss mouse 3T3 fibroblasts by a mechanism that appeared unrelated to inhibition of protein kinase activity (Olsen, R., Melder, D., Seewald, M., Abraham, R., and Powis, G. (1990) Biochem. Pharmacol. 39, 968-972). In the present study, we report that staurosporine inhibits ligand-dependent PDGF-R tyrosine kinase activation in cell-free receptor preparations and in intact Swiss 3T3 cells. At the same concentrations (10(-8)-10(-6) M), staurosporine suppressed both the tyrosine phosphorylation of phospholipase C activity and the hydrolysis of phosphoinositides induced by PDGF stimulation of intact cells. In contrast, guanine nucleotide-binding protein-dependent phospholipase C activation induced by bradykinin or fluoroaluminate anion was relatively insensitive to staurosporine. A preferential inhibitory effect of staurosporine on signal generation by the PDGF-R was indicated by findings that epidermal growth factor receptor (EGF-R) tyrosine kinase activity and EGF-dependent phospholipase C in A-431 carcinoma cells were approximately 100-fold less sensitive to this drug. These data indicate that submicromolar concentrations of staurosporine inhibit PDGF-dependent phosphoinositide hydrolysis and Ca2+ mobilization through a proximal inhibitory effect on ligand-induced activation of the PDGF-R tyrosine kinase.  相似文献   

3.
Activation of Ca2+-mobilizing receptors rapidly increases the cytoplasmic Ca2+ concentration both by releasing Ca2+ stored in endoplasmic reticulum and by stimulating Ca2+ entry into the cells. The mechanism by which Ca2+ release occurs has recently been elucidated. Receptor activation of phospholipase C results in the hydrolysis of the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), to yield two intracellular messengers, diacylglycerol (DAG) and (1,4,5)inositol trisphosphate [(1,4,5)IP3]. DAG remains in the plasma membrane where it stimulates protein phosphorylation via the phospholipid-dependent protein kinase C. (1,4,5)IP3 diffuses to and interacts with specific sites on the endoplasmic reticulum to release stored Ca2+. Receptor stimulation of phospholipase C appears to be mediated by one or more guanine nucleotide-dependent regulatory proteins by a mechanism analogous to hormonal activation of adenylyl cyclase. The actions of (1,4,5)IP3 on Ca2+ mobilization are terminated by two metabolic pathways, sequential dephosphorylation to inositol bisphosphate (IP2), inositol monophosphate (IP) and inositol or by phosphorylation to inositol tetrakisphosphate (IP4) and sequential dephosphorylation to different inositol phosphates. A sustained cellular response also requires Ca2+ entry into the cell from the extracellular space. The mechanism by which hormones increase Ca2+ entry is not known; a recent proposal involving movement of Ca2+ through the endoplasmic reticulum, possibly regulated by IP4, will be considered here.  相似文献   

4.
Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn-negative and syk-negative B cell lines were established. Syk-deficient B cells abolished the tyrosine phosphorylation of phospholipase C-gamma 2, resulting in the loss of both inositol 1,4,5-trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn-deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.  相似文献   

5.
Both phytohaemagglutinin and antibodies to the CD3 molecule induced proliferation and phosphoinositide hydrolysis in human peripheral-blood T lymphocytes, but the magnitude of the inositol phosphate response was small and the rate of accumulation slow [significant increases in Ins(1,4,5)P3 were observed only after 10 min]. Hence this response differs from the well-characterized Ins(1,4,5)P3 responses of many other systems. This slow response, its abrogation in Ca2+-depleted medium, the slow and maintained increase in Ca2+ as measured by Quin-2, and the ability of the Ca2+ ionophore A23187 to stimulate Ins(1,4,5)P3 accumulation all suggest that the increase in Ins(1,4,5)P3 occurs, at least in part, as a result of receptor-mediated Ca2+ influx in mitogen-stimulated T lymphocytes.  相似文献   

6.
Platelet-derived growth factor (PDGF) stimulates the proliferation of quiescent fibroblasts through a series of events initiated by activation of tyrosine kinase activity of the PDGF receptor at the cell surface. Physiologically significant substrates for this or other growth factor receptor or oncogene tyrosine kinases have been difficult to identify. Phospholipase C (PLC), a key enzyme of the phosphoinositide pathway, is believed to be an important site for hormonal regulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate, which produces the intracellular second-messenger molecules inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. Treatment of BALB/c 3T3 cells with PDGF led to a rapid (within 1 min) and significant (greater than 50-fold) increase in PLC activity, as detected in eluates of proteins from a phosphotyrosine immunoaffinity matrix. This PDGF-stimulated increase in phosphotyrosine-immunopurified PLC activity occurred for up to 12 h after addition of growth factor to quiescent cells. Interestingly, the PDGF stimulation occurred at 3 as well as 37 degrees C and in the absence or presence of extracellular Ca2+. Immunoprecipitation of cellular proteins with monoclonal antibodies specific for three distinct cytosolic PLC isozymes demonstrated the presence of a 145-kilodalton isozyme, PLC-gamma (formerly PLC-II), in BALB/c 3T3 cells. Furthermore, these immunoprecipitation studies showed that PLC-gamma is rapidly phosphorylated on tyrosine residues after PDGF stimulation. The results suggest that mitogenic signaling by PDGF is coincident with tyrosine phosphorylation of PLC-gamma.  相似文献   

7.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

8.
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3.  相似文献   

9.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

10.
The membrane signaling properties of the neuronal type-5 muscarinic acetylcholine receptor (M5 AChR) as expressed in murine L cells were studied. Recipient Ltk- cells responded to ATP acting through a P2-purinergic receptor by increasing phosphoinositide hydrolysis 2-fold but were unresponsive to 17 receptor agonists that are stimulatory in other cells. L cells expressing the M5 AChR responded to carbachol (CCh) with an approximately 20-fold increase in phospholipase C activity, mobilization of Ca2+ from endogenous stores, causing a transient peak increase in the intracellular concentration of Ca2+ ([Ca2+]i), influx of extracellular Ca2+, causing a sustained increase in [Ca2+]i dependent on extracellular Ca2+, and release of [3H]arachidonic acid from prelabeled cells, without altering resting or prostaglandin E1-elevated intracellular cAMP levels. None of the effects of the M5 AChR were inhibited by pertussis toxin. The regulation of L cell [Ca2+]i was studied further. ATP had the same effects as CCh and the two agonists acted on a shared intracellular pool of Ca2+. The peak and sustained [Ca2+]i increases were reduced by cholera toxin and forskolin, neither of which altered significantly phosphoinositide hydrolysis. This is consistent with interference with the action of inositol 1,4,5-trisphosphate (IP3) through cAMP-mediated phosphorylation and suggests a continued involvement of IP3 during the sustained phase of [Ca+]i increases. The temporal pattern of the sustained [Ca2+]i increase differed whether elicited by CCh or ATP, and was enhanced in pertussis toxin-treated cells. This is consistent with existence of a kinetic control of the sustained [Ca2+]i change by a receptor-G protein-dependent mechanism independent of the IP3 effector site(s) (e.g. pulsatile activation of phospholipase C and/or pulsatile activation of a receptor/G protein-operated plasma membrane Ca2+ channel). Thus, the non-excitable L cell may be a good model for studying [Ca2+]i regulations, as may occur in other nonexcitable cells of which established cell lines do not exist, and for studying of receptors that as yet cannot be studied in their natural environment.  相似文献   

11.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

12.
Epidermal growth factor (EGF) treatment of A-431 cells induces a biphasic increase in the levels of inositol phosphates. The growth factor produces an initial, rapid increase in the level of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) due to hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (Wahl, M., Sweatt, J. D., and Carpenter, G. (1987) Biochem. Biophys. Res. Commun. 142, 688-695). The level of inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) also rises rapidly in response to treatment with EGF. The initial formation (less than 1 min) of Ins-1,4,5-P3 and Ins-1,3,4,5-P4 does not require Ca2+ present in the culture medium. However, the addition of Ca2+ to the medium at levels of 100 microM or greater potentiates the growth factor-stimulated increases in the levels of all inositol phosphates at later times after EGF addition (1-60 min). The data suggest that EGF-receptor complexes initially stimulate the enzyme phospholipase C in a manner that is independent of an influx of extracellular Ca2+. The presence of Ca2+ in the medium allows prolonged growth factor activation of phospholipase C. Treatment of A-431 cells with Ca2+ ionophores (A23187 and ionomycin) did not mimic the activity of EGF in producing a rapid increase in the formation of the Dowex column fraction containing Ins-1,4,5-P3, Ins-1,3,4,5-P4, and inositol 1,3,4-trisphosphate (InsP3). However, the initial EGF-stimulated formation of inositol phosphates was substantially diminished in cells loaded with the Ca2+ chelator Quin 2/AM. EGF receptor occupancy studies indicated that maximal stimulation of InsP3 accumulation by EGF requires nearly full (75%) occupancy of available EGF binding sites, while half-maximal stimulation requires 25% occupancy. 12-O-Tetradecanoylphorbol-13-acetate (TPA), an exogenous activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), causes a dramatic, but transient, inhibition of the EGF-stimulated formation of inositol phosphates. Tamoxifen and sphingosine, reported pharmacologic inhibitors of protein kinase C activity, potentiate the capacity of EGF to induce formation of inositol phosphates. Neither TPA nor tamoxifen significantly affects the 125I-EGF binding capacity of A-431 cells; however, TPA appeared to enhance internalization of the ligand. Ligand occupation of the EGF receptor on the A-431 cell appears to initiate a complex signaling mechanism involving production of intracellular messengers for Ca2+ mobilization and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The ability of cAMP-dependent hormones to modulate the actions of Ca2(+)-mobilizing hormones was studied in single fura-2-injected guinea pig hepatocytes. In 91% of cells the cAMP-linked hormone, isoproterenol, applied alone, did not alter cytosolic Ca2+ concentration. In 78% of cells which had been pre-exposed to a low concentration of angiotensin II, isoproterenol was able to increase cytosolic Ca2+. Isoproterenol did not, however, increase inositol 1,4,5-trisphosphate or inositol tetrakisphosphate on its own, or in the presence of angiotensin II. Isoproterenol was also able to raise cytosolic Ca2+ concentration in cells microinjected with inositol 2,4,5-trisphosphate or a photoactivatable derivative of inositol 1,4,5-trisphosphate. The elevation of cytosolic Ca2+ concentration induced by isoproterenol in angiotensin II-treated cells and cells injected with caged inositol 1,4,5-trisphosphate was blocked by heparin, implying that the effect was mediated by an inositol 1,4,5-trisphosphate receptor agonist. In permeabilized hepatocytes, inositol 1,4,5-trisphosphate-induced Ca2+ release was enhanced by 8-bromo-cAMP and the catalytic subunit of cAMP-dependent kinase. Cyclic AMP-dependent kinase shifted the dose-response curve for inositol 1,4,5-trisphosphate-mediated Ca2+ release to the left by a factor of 4 and increased the total amount of Ca2+ released by 25%. These results indicate that increased sensitivity of the intracellular Ca2+ releasing organelle to inositol 1,4,5-trisphosphate is responsible for synergism between phospholipase C- and adenylylcyclase-linked hormones in the liver.  相似文献   

14.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

15.
Protein kinase C and T cell activation   总被引:16,自引:0,他引:16  
Understanding the intracellular mechanisms by which binding of ligands, such as hormones and growth factors, to their specific receptors elicits the appropriate cellular response has long been a topic of great interest. Considerable excitement was generated when it was recognised that several receptor-ligand interactions operate via the hydrolysis of inositol phospholipids. This yields, at least, two 'second messengers', namely, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which causes the release of Ca2+ from intracellular stores, and 1,2-diacylglycerol (ac2Gro), which activates the serine/threonine-specific enzyme, protein kinase C(PKC), reviewed in [1] and [2]. The pertinent question that follows is, how do PKC activation and elevation of the intracellular Ca2+ concentration evoke cell responses? In this review, attention has been focused on PKC, and the consequences of its activation in resting human T cells. Evidence that PKC activity is, at least partially, responsible for activation of resting human T cells will be examined, and some of the more recent research investigating how PKC activation elicits this cell response will be described.  相似文献   

16.
In this report, we describe a Jurkat cell variant, termed JCT8, the selection of which is based upon its resistance to cell-growth inhibition mediated by the holotoxin of Vibrio cholerae, cholera toxin (CT). JCT8 cells exhibit normal cAMP production in response to various cAMP inducers, including CT, together with conserved ADP ribosylation in vitro of G-protein Gs alpha by the A subunit of the toxin. However, after a 4-h pretreatment with CT, JCT8 cells have a conserved expression of cell-surface CD3 molecules. These effects are in contrast to those elicited by the toxin in long term PGE2-desensitized Jurkat cells, which remain as sensitive as the wild type to the inhibitory action of CT on cell growth and CD3 cell-surface expression, despite poor responsiveness to CT with regard to cAMP production. In JCT8 cells, Ca2+ mobilization induced via the CD3/TCR is maintained after CT treatment contrasting with its complete suppression in the wild-type and in the PGE2-desensitized cells. However, as in the other cell types, CT still suppresses Ca2+ influx in JCT8 cells. Increase in inositol phosphates by CD3 stimulation of JCT8 cells, including of inositol 1,4,5-triphosphate (I(1,4,5)P3), is only partially antagonized by CT. This suggests either that in JCT8 cells there is a different susceptibility of Ca2+ mobilization and influx to partial inhibition by CT of CD3-triggered phospholipase C (PLC)-induced phosphoinositide hydrolysis or that an additional and PLC-independent suppressive effect of the toxin on Ca2+ influx may exist. To investigate this particular point further, we use Thapsigargin, a Ca(2+)-endoplasmic reticulum ATPase inhibitor that can mobilize in human T lymphocytes I(1,4,5)P3-dependent intracellular Ca2+ pools by a PLC-independent pathway. We demonstrate that the Ca2+ influx triggered in the wild-type Jurkat cells or in JCT8 cells by Thapsigargin is antagonized by CT. The present data are therefore consistent with the idea that CT specifically impairs in the Jurkat T cell model the entry of Ca2+ from extracellular spaces by a mechanism independent not only from cAMP but also in part from inhibition by the toxin of phosphoinositide hydrolysis.  相似文献   

17.
In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3-dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.  相似文献   

18.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

19.
BALB/MK is a nontransformed epithelial cell line derived from primary BALB/c mouse keratinocytes that requires epidermal growth factor (EGF) for growth. Using a defined-medium culture system, we investigated the role of physiological concentrations of EGF on phosphoinositide metabolism in these cells. The results show that EGF rapidly activates phospholipase-C mediated phosphoinositide metabolism resulting in the generation of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. These metabolites control intracellular Ca2+ levels and activate protein kinase C, respectively. Protein kinase C activation in response to EGF was evidenced by the phosphorylation of the acidic 80 kilodalton endogenous protein substrate (p80) specific for this kinase. In contrast, insulin, which acts in concert with EGF to cause BALB/MK cell proliferation, had no effect on phosphoinositide metabolism nor led to any additional stimulation when added in combination with EGF. Taken together, our results show that rapid alterations in phosphoinositide metabolism and protein kinase C activation are associated with the normal mitogenic response of keratinocytes to EGF.  相似文献   

20.
Acute hydrolysis of phosphoinositides has been demonstrated in bovine aortic endothelial cells (BAEC) treated with bradykinin (BK) (10(-7)M). The first phosphoinositide to decrease was phosphatidylinositol-4,5-bisphosphate (PIP2) indicating this to be the initial substrate of phospholipase action. Other lipid changes associated with the stimulation of BAEC were an increase in diacylglycerol (DAG) and arachidonic acid (AA) with a sustained production of phosphatidic acid (PA). The changes in cell phospholipids were accompanied by the release of inositol phosphates. Inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) was produced within 10 s of stimulation with BK. There was no evidence for the production of inositol-1,3,4-trisphosphate. The release of ionic calcium (Ca2+) intracellularly was demonstrated. The timecourse of the rise in intracellular Ca2+ was consistent with the timecourse of production of IP3. Intracellular Ca2+ rose from 127 +/- 21 nM to 462 +/- 27 nM. The Ca2+ peak was at 7.0 +/- 0.4 s and took 3 min to reach a steady state which remained above the basal level. When extracellular Ca2+ was depleted in the extracellular medium a spike of intracellular Ca2+ release was measured with an immediate return to basal. Entry of extracellular Ca2+ into the cell after ionophore A23187 treatment does not induce inositol phosphate release, indicating that phosphoinositide hydrolysis is likely to be the cause rather than consequence of the elevation in cytosolic Ca2+. These data indicate action of phospholipase C (PLC) on PIP2 after BK stimulation of BAEC with the subsequent production of InsP3 causing the resulting intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号