首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have produced an active form of Schistocerca gregaria ion transport peptide (ITP) in an insect cell expression system. Transformed Drosophila Kc1 cells secreted a form of ITP into the cell culture medium that was proteolytically cleaved correctly at the amino (N)-terminus. Concentrated culture supernatant from transformed Kc1 and Hi5 cells had high biological activity when tested on isolated locust ilea. Conversely, ITP expressed by baculovirus-infected Sf9 cells was larger in size and had decreased specific activity compared to ITP produced by Kc1 cells due to incorrect cleavage of the peptide at the N-terminus in the baculovirus system. This demonstrates how processing of the secreted foreign protein (ITP) expressed under the late polyhedrin promoter is compromised in a baculovirus-infected cell. Transient transformation of Kc1 cells results in supernatants containing two forms of ITP; one form (A) co-elutes with synthetic ITP and the other form (B) has reduced electrophoretic mobility. In contrast, in stably transformed Kc1 cell supernatant, ITP is expressed in a single form, which has the same electrophoretic mobility and specific biological activity as form A produced by transiently transformed Kc1 cells. Arch.  相似文献   

2.
The functions of the 6-7 amino acid N-terminal domain conserved in insect and crustacean members of the hyperglycemic hormone (CHH) family were assayed by site-directed mutagenesis of Schistocerca gregaria ion-transport peptide (SchgrITP). Mutant peptides were expressed in Drosophila Kc1 cells and tested in a biological assay measuring stimulation of active Cl(-) transport across the locust ileum. We exchanged the N-terminal domain of SchgrITP with that of the shrimp Penaeus japonicus hyperglycemic hormone leaving the remainder of SchgrITP intact. The chimeric peptide was completely inactive in the ileal bioassay, showing that the N-terminus of SchgrITP is essential and that the 2 amino acids (phenylalanine-3 and aspartate-4) conserved in the shrimp and locust peptides are not sufficient for function. We made all possible alanine substitutions in the SchgrITP N-terminal domain. Only phenylalanines 2 and 3 were essential for function in the locust ileal bioassay. All N-terminal mutations were cleaved correctly from the prepropeptide, and expressed in similar concentrations as wild-type ITP suggesting the specific amino acids are not essential for these functions. Post-translational modification may explain a minor ITP isomorph observed in Drosophila Kc1 cell expression. Alanine substitution at position 2 produced a weak ITP antagonist. These structure-function studies, the first for any member of the CHH family, show that both conserved and unconserved amino acids contribute to SchgrITP ion-transport function and that the conserved aspartate in position 4 is required for a yet uncharacterized function.  相似文献   

3.
Restoration of chloride conductance via the introduction of an anion selective pore, formed by a channel-forming peptide, has been hypothesized as a novel treatment modality for patients with cystic fibrosis (CF). Delivery of these peptide sequences to airway cells from an aqueous environment in the absence of organic solvents is paramount. New highly soluble COOH- and NH(2)-terminal truncated peptides, derived from the second transmembrane segment of the glycine receptor alpha-subunit (M2GlyR), were generated, with decreasing numbers of amino acid residues. NH(2)-terminal lysyl-adducted truncated peptides with lengths of 22, 25, and 27 amino acid residues are equally able to stimulate short circuit current (I(SC)). Peptides with as few as 16 amino acid residues are able to stimulate I(SC), although to a lesser degree. In contrast, COOH-terminal truncated peptides show greatly reduced induced I(SC) values for all peptides fewer than 27 residues in length and show no measurable activity for peptides fewer than 21 residues in length. CD spectra for both the NH(2)- and COOH-truncated peptides have random structure in aqueous solution, and those sequences that stimulated the highest maximal I(SC) are predominantly helical in 40% trifluoroethanol. Peptides with a decreased propensity to form helical structures in TFE also failed to stimulate I(SC). Palindromic peptide sequences based on both the NH(2)- and COOH-terminal halves of M2GlyR were synthesized to test roles of the COOH- and NH(2)-terminal halves of the molecule in solution aggregation and channel forming ability. On the basis of the study presented here, there are distinct, nonoverlapping regions of the M2GlyR sequence that define solution aggregation and membrane channel assembly. Peptides that eliminate solution aggregation with complete retention of channel forming activity were generated.  相似文献   

4.
We previously showed that bovine apolipoprotein A-II (apoA-II) has antimicrobial activity against Escherichia coli in PBS, and its C-terminal residues 49-76 are responsible for the activity using synthetic peptides. In order to understand the structural requirements of peptide 49-76 for the antimicrobial activity, the N- or C-terminus was truncated and then the charged (Lys or Asp) or Ser residues were replaced by Ala. Deletion of the first or last three amino acids and replacement of Lys-54/55 or 71/72 by Ala caused a substantial decreases in alpha-helical content in 50% TFE, showing the possible presence of helices in N- and C-terminal regions, respectively. The anti-Escherichia coli activity of the peptide correlated with its liposome-binding activity. Replacement of Lys-54/55 or 71/72 by Ala resulted in an almost complete loss of anti-E. coli activity with a substantial decrease in liposome-binding activity. Moreover, deletion of the last three amino acids caused a reduction to 1/17 of the original anti-E. coli activity with a moderate decrease in liposome-binding activity. In contrast, replacement of Ser-65/66, Asp-59, or Asp-69 by Ala hardly affected the anti-E. coli activity. These findings suggest that Lys-54/55 and Lys-71/72 on the putative helices are critical for antimicrobial activity, and the C-terminal 3 amino acids are important for the structural integrity of the C-terminal region for effective antimicrobial activity.  相似文献   

5.
A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site.  相似文献   

6.
Mechanism of rhodopsin kinase activation   总被引:9,自引:0,他引:9  
The role of the cytoplasmic loops and C-terminal region of bovine rhodopsin (Rho) in binding and activating rhodopsin kinase was investigated. The ability of various enzymatically truncated forms of photolyzed rhodopsin (Rho*) to stimulate rhodopsin kinase activity was quantified. Following endopeptidase Asp-N cleavage of all phosphorylation sites on the C-terminal, the resulting truncated Rho* (329G-Rho*) was not phosphorylated by rhodopsin kinase. This suggests that rhodopsin kinase only phosphorylates C-terminal sites of Rho*. However 329G-Rho* could bind rhodopsin kinase and stimulate phosphorylation of exogenous peptide. Kinase stimulation was investigated for other truncated forms of Rho* in which the C-terminal region was either partially or completely eliminated, and the V-VI loop was either cleaved or left intact (339K-Rho*, 341E239E-Rho*, 329G239E-Rho*, 327P240S-Rho*). Results suggest that the V-VI loop is crucial for kinase binding (similar to the binding of GT). Mastoparan, a model peptide for G-protein-coupled receptors, was found to stimulate rhodopsin kinase in a mechanism similar to that of truncated Rho*. We conclude that rhodopsin kinase binds to the cytoplasmic loops of Rho* to cause a stimulation of its catalytic activity.  相似文献   

7.
Katayama H  Ohira T  Nagata S  Nagasawa H 《Biochemistry》2004,43(30):9629-9635
In crustaceans, molt-inhibiting hormone (MIH) controls molting by suppressing the synthesis and/or secretion of molting hormone. In our previous study, which determined the solution structure of MIH by NMR, we hypothesized that the peptide's functional site spanned the region encompassing the N-terminal alpha-helix and a portion of the C-terminus, both of which are located sterically close to each other [Katayama et al. (2003) J. Biol. Chem. 278, 9620-9623]. To confirm this hypothesis, various mutants of MIH were prepared and their molt-inhibiting activities were assessed. All peptides mutated at the putative functional site exhibited circular dichroism spectra similar to the natural MIH, suggesting that the mutants retained their natural conformation regardless of the mutations. As expected, a majority of the mutants, except for Delta12 (a deletion mutant of Gly(12)) and Delta75-77 (a deletion mutant of the last three residues of the C-terminus), were less active than the natural MIH. In particular, I72G exhibited no molt-inhibiting activity even at 200 nM, while N13A and S71Y exhibited low activity at the same concentration. In contrast, the natural and recombinant MIHs exhibited full inhibitory activity at 20 nM. All these results indicate that the functional site of MIH is located in the region containing the C-terminal ends of the N- and C-terminal alpha-helices, and that Asn(13), Ser(71), and Ile(72) are especially significant for conferring molt-inhibiting activity. Furthermore, these findings agree with the results and the proposed hypothesis presented in previous studies on the structure-activity relationship of MIH and its related peptides.  相似文献   

8.
Lee JH  Ahn SH  Lee EM  Jeong SH  Kim YO  Lee SJ  Kong IS 《FEBS letters》2005,579(11):2507-2513
We have shown previously that the C-terminal region of the extracellular metalloprotease of Vibrio mimicus (VMC) is essential for collagenase activity. Here, we demonstrate that deletion of 100 amino acids, but not 67 amino acids, from the C-terminus of the intact VMC protein (VMC61) abolished the collagenase activity. The intervening 33-amino acid region contains a repeated FAXWXXT motif that is essential for insoluble type I collagen binding; the isolated 33-amino acid peptide bound to insoluble type I collagen, while a peptide containing only the first FAXWXXT motif did not. Compared to the VMC61, the 33-amino acid peptide corresponding to the C-terminus exhibited a similar binding affinity and a lower binding capacity.  相似文献   

9.
Both the propeptide in the precursor carboxypeptidase Y (proCPY) and the mature CPY (mCPY)-specific endogenous inhibitor (I(C)) inhibit CPY activity. The N-terminal inhibitory reactive site of I(C) (the N-terminal seven amino acids of I(C)) binds to the substrate-binding site of mCPY and is essential for mCPY inhibition, but the mechanism of mCPY inhibition by the propeptide is poorly understood. In this study, sequence alignment between I(C) and proCPY indicated that a sequence similar to the N-terminal region of I(C) was present in proCPY. In particular, a region including the C-terminus of the propeptide was similar to the N-terminal seven amino acids of I(C). In the presence of peptides identical to the N-terminus of I(C) and the C-terminus of the propeptide, CPY activity was competitively inhibited. The C-terminal region of the propeptide might bind to the substrate-binding site of mCPY.  相似文献   

10.
Kitabgi P 《Peptides》2006,27(10):2508-2514
Neurotensin (NT) is synthesized as part of a larger precursor that also contains neuromedin N (NN), a six amino acid neurotensin-like peptide. NT and NN are located in the C-terminal region of the precursor (pro-NT/NN) where they are flanked and separated by three Lys-Arg sequences. A fourth dibasic sequence is present in the middle of the precursor. Dibasics are the consensus sites recognized and cleaved by endoproteases that belong to the recently identified family of pro-protein convertases (PCs). In tissues that express pro-NT/NN, the three C-terminal Lys-Arg sites are differentially processed, whereas the middle dibasic is poorly cleaved. Pro-NT/NN processing gives rise mainly to NT and NN in the brain, to NT and a large peptide ending with the NN sequence at its C-terminus (large NN) in the gut and to NT, large NN and a large peptide ending with the NT sequence (large NT) in the adrenals. Recent evidence indicates that PC1, PC2 and PC5-A are the pro-hormone convertases responsible for the processing patterns observed in the gut, brain and adrenals, respectively. As NT, NN, large NT and large NN are all endowed with biological activity, the evidence reviewed here supports the idea that post-translational processing of pro-NT/NN in tissues may generate biological diversity.  相似文献   

11.
Sequence alignment of human T-lymphotropic virus type I (HTLV-I) protease and other retroviral proteases reveals that the leukemia virus proteases contain residues at the C-terminus that are absent in the other proteases. We have prepared a mutant of HTLV-I protease that does not contain the 10 C-terminal residues and demonstrated that the catalytic efficiency of cleavage of a peptide substrate is unaffected.  相似文献   

12.
To investigate the enzymatic properties of Vibrio mimicus metalloprotease, the mature metalloprotease gene (vmc) was overexpressed in Escherichia coli and the recombinant protein (rVMC61) was purified by metal affinity chromatography. rVMC61 showed maximum activity at about 37 degrees C, pH 8. The purified rVMC61 was very specific toward collagen substrates, such as gelatin, type I, II, and III collagens and synthetic peptides (Cbz-GPLGP and Cbz-GPGGPA). But it did not show degrading activity toward other biological proteins including lysozyme, lactoferrin and bovine serum albumin. rVMC61 also showed cytotoxicity against CHSE-214 fish cells. To examine the role of the C-terminal region of rVMC61, the 3' end of the metalloprotease gene (vmc) was digested serially with exonuclease III. The truncated vmc derivatives encoding 57-42 kDa of the protease were isolated and overexpressed in E. coli. The collagenase activities of truncated proteins were investigated using gelatin as substrate. Deletion of 100 amino acids from the C-terminus resulted in loss of gelatin degrading activity. However, deletion of 67 amino acids from the C-terminus did not affect its gelatin degrading activity.  相似文献   

13.
The bovine papillomavirus type 1 (BPV-1) oncoprotein encoded by the E5 ORF is a small highly hydrophobic protein, which is capable of inducing oncogenic transformation of cells. We studied the effect of the BPV-1 E5 protein expression on the arachidonic acid metabolism in monkey (COS1) and human (C33A) cells. At relatively low protein concentrations the phospholipase A(2) (PLA(2)) activity and the arachidonic acid (AA) metabolism are activated. E5 mutant proteins, lacking cysteines responsible for the dimerisation of the protein (C37S, C37SC39S), and truncated E5, lacking the C-terminal region, are non-transforming and unable to stimulate the PLA(2) activity and AA metabolism. The transformation-defective mutant D33V, which does not activate the platelet-derived growth factor receptor (PDGFR), activates AA metabolism like wt E5. Our data suggest that the BPV-1 E5 protein could stimulate the AA metabolism independently of PDGF receptor.  相似文献   

14.
A key molecular event in prion diseases is the conversion of cellular prion protein (PrP(c)) into an abnormal misfolded conformer (PrP(sc)). The PrP(c) N-terminal domain plays a central role in PrP(c) functions and in prion propagation. Because mammalian PrP(c) is found as a full-length and N-terminally truncated form, we examined the presence and amount of PrP(c) C-terminal fragment in the brain of different species. We found important variations between primates and rodents. In addition, our data show that the PrP(c) fragment is present in detergent-resistant raft domains, a membrane domain of critical importance for PrP(c) functions and its conversion into PrP(sc).  相似文献   

15.
The biological activity of the important neuropeptide cholecystokinin octapeptide (CCK8) resides at the C-terminus. Antibodies with C-terminal specificity have been reported to cross-react with a different neuropeptide, calcitonin gene related peptide (CGRP) and this has frustrated the interpretation of immunohistochemical studies. We describe here the properties of a monoclonal antibody to the CCK-related peptide, caerulein, that reacts with the C-terminal region of CCK8, but does not react with CGRP in radioimmunoassay or immunohistochemistry. The distribution of CCK-like activity revealed by immunohistochemistry using this antibody broadly resembles that described previously with a single major exception: in the dorsal horn of the spinal cord. The results support the suggestion that apparent CCK activity in the terminals of rat primary sensory neurones is due to cross-reactivity with CGRP.  相似文献   

16.
Pearce G  Yamaguchi Y  Munske G  Ryan CA 《Peptides》2008,29(12):2083-2089
AtPep1, a 23-amino acid peptide recently isolated from Arabidopsis leaves, induces the expression of the genes encoding defense proteins against pathogens. We investigated the structure-activity relationship of AtPep1 with its receptor, a 170 kDa leucine-rich repeat receptor kinase (AtPEPR1) by utilizing a suspension cell assay (the alkalinization assay). Binding of AtPep1 to AtPEPR1 on the cell surface is accompanied by an increase in the pH of Arabidopsis suspension cell media by 1 pH unit in 15 min with a half-maximal response of 0.25 nM. Sequential removal of N-terminal amino acids had little effect on activity until the peptide was reduced to 15 amino acids [AtPep1(9-23)], which decreased the activity by less than one order of magnitude. Activity was completely abolished when nine C-terminal amino acids remained. Removal of the C-terminal asparagine from AtPep1(9-23), resulted in a decrease in activity (12 max approximately 100 nM). AtPep1(9-23) was used for alanine-substitution analysis and revealed two important residues for activity, a serine, [A(15)]AtPep1(9-23) (12 max approximately 10nM), and a glycine, [A(17)]AtPep1(9-23) (12 max approximately 1000 nM). Neither [A(17)]AtPep1(9-23) nor the C-terminal truncated AtPep1, AtPep1(9-22), were able to compete with AtPep1(9-23) in the alkalinization assay. The importance of the glycine residue for binding to the AtPep receptor was also confirmed by competition assays using radiolabeled AtPep1. d-Alanine or 2-methylalanine substituted at the glycine position displayed only a slight decrease in activity whereas l- and d-proline substitution caused a loss of activity. Homologs of AtPep1 identified in Arabidopsis and other species revealed a strict conservation of the glycine residue.  相似文献   

17.
An Z  Chen Y  Koomen JM  Merkler DJ 《Proteomics》2012,12(2):173-182
Amidation is a post-translational modification found at the C-terminus of ~50% of all neuropeptide hormones. Cleavage of the C(α)-N bond of a C-terminal glycine yields the α-amidated peptide in a reaction catalyzed by peptidylglycine α-amidating monooxygenase (PAM). The mass of an α-amidated peptide decreases by 58 Da relative to its precursor. The amino acid sequences of an α-amidated peptide and its precursor differ only by the C-terminal glycine meaning that the peptides exhibit similar RP-HPLC properties and tandem mass spectral (MS/MS) fragmentation patterns. Growth of cultured cells in the presence of a PAM inhibitor ensured the coexistence of α-amidated peptides and their precursors. A strategy was developed for precursor and α-amidated peptide pairing (PAPP): LC-MS/MS data of peptide extracts were scanned for peptide pairs that differed by 58 Da in mass, but had similar RP-HPLC retention times. The resulting peptide pairs were validated by checking for similar fragmentation patterns in their MS/MS data prior to identification by database searching or manual interpretation. This approach significantly reduced the number of spectra requiring interpretation, decreasing the computing time required for database searching and enabling manual interpretation of unidentified spectra. Reported here are the α-amidated peptides identified from AtT-20 cells using the PAPP method.  相似文献   

18.
The role of the C-terminal domain of rhodopsin in the activation of transducin was studied. The treatment of photoreceptor membranes with trypsin, thermolysin, and Asp-N-endoprotease led to the respective rhodopsin species devoid of 9, 12-, or 19-aa C-terminal fragments. It was shown that the removal of 9-aa fragment by trypsin does not affect the catalytic activity of the receptor, whereas the thermolysin-induced truncation of the rhodopsin C-terminus by 12 aa about 1.5-fold enhances its activity. The Asp-N-endoprotease-assisted removal of 19 aa (i.e., the shortening by seven more C-terminal aa) virtually unchanges the rhodopsin catalytic activity compared to the preparation truncated with thermolysin. These results suggest that the part of the rhodopsin C-terminal fragment between the sites of its cleavage by trypsin and thermolysin (Val337-Ser338-Lys339) inhibits the signal transduction from rhodopsin to the next component of visual cascade. The English version of the paper.  相似文献   

19.
Arginase I is a homotrimeric protein with a binuclear manganese cluster. At the C-terminus of each monomer, the polypeptide chain forms an unusual S-shaped oligomerization motif where the majority of intermonomer contacts are located [Z.F. Kanyo, L.R. Scolnick, D.E. Ash, D.W. Christianson, Nature 383 (1996) 554-557]. In order to study the implication of this motif in the quaternary structure of human arginase I, we have constructed a truncated arginase lacking the 14 C-terminal amino acids, leaving Arg-308 as the last residue in the sequence. The resulting protein retains its trimeric structure, as determined by gel filtration (molecular mass 94 kDa). The same result was obtained in the presence of high ionic strength (KCl 0.5 M). Both data indicate that neither the S-shaped motif nor Arg-308 are fundamental in keeping the trimeric quaternary structure. Data obtained from intrinsic anisotropy and fluorescence intensity studies allow us to predict that the distance between the two unique tryptophans in the sequence is 2.9 nm in the native arginase and 4.1 nm for the truncated mutant. These distances allow us to assume a different conformational state in the truncated arginase without any change in its quaternary structure, suggesting that the carboxy-terminal motif is not the most prominent domain implicated in the quaternary structure of human arginase. Collisional quenching studies reinforce this possibility, since using I(-) as quenching molecule we were able to distinguish the two tryptophans in the truncated arginase. Moreover, kinetic studies show that the truncated mutant was fully active. In summary, the main conclusion about the structure of the human arginase I, derived from our study, is that the C-terminal S-shaped motif is not basic to the maintenance of the quaternary structure nor to the activity of the protein.  相似文献   

20.
The amino acid sequence of osteogenic growth peptide (OGP) consists of 14 residues identical to the C-terminal tail of histone H4. Native and synthetic OGP are mitogenic to osteoblastic and fibroblastic cells and enhance osteogenesis and hematopoiesis in vivo. The C-terminal truncated pentapeptide of OGP, H-Tyr-Gly-Phe-Gly-Gly-OH [OGP(10-14)], is a naturally occurring osteoblastic mitogen, equipotent to OGP. The present study assesses the role of individual amino acid residues and side chains in the OGP(10-14) mitogenic activity which showed a very high correlation between osteoblastic and fibroblastic cell cultures. Truncation of either Tyr10 or its replacement by Ala or D-Ala resulted in substantial, but not complete, loss of activity. Nevertheless, only a small loss of activity was observed following removal of the Tyr10 amino group. No further loss occurred consequent to the monoiodination of desaminoTyr10 on meta-position. However, a marked decrease in proliferative activity followed removal of the Tyr10 phenolic or the Phe12 aromatic group. Loss of activity of a similar magnitude also occurred subsequent to replacing Gly11 with L- or D-Ala. Approximately 50% loss of mitogenic activity occurred subsequent to truncation of Gly14 or blocking the C-terminal group as the methyl ester. All other modifications of the C-terminus and L- or D-Ala substitution of Gly13 resulted in 70-97% decrease in activity. Collectively, these data suggest that the integrity of the pharmacophores presented by Tyr and Phe side chains, as well as the Gly residues at the C-terminus, are important for optimal bioactivity of OGP(10-14).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号