首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orientation and temperature dependence (4.2-2.5 K) of electron paramagnetic resonance (EPR) power saturation and spin-lattice relaxation rate, and the orientation dependence of signal linewidth, were measured in single crystals of the aquo complex of ferric sperm whale skeletal muscle myoglobin. The spin-packet linewidth was found to be temperature independent and to vary by a factor of seven within the heme plane. An analysis is presented which enables one to arrive at (a) hyperfine component line-widths and, from the in-plane angular variation of the latter, at (b) the widths of distributions in energy differences between low-lying electronic levels and (c) the angular spread in the in-plane principal g-directions. The values of the energy level distributions in crystals obtained from the measurements and analysis reported here are compared with those obtained by a different method for the same protein complex in frozen solution. The spread in the rhombic energy splitting is significantly greater in solution than in the crystal.  相似文献   

2.
UV-visible absorption and magnetic circular dichroism (MCD) data are reported for the cavity mutants of sperm whale H93G myoglobin and human H25A heme oxygenase in their ferric states at 4 degreesC. Detailed spectral analyses of H93G myoglobin reveal that its heme coordination structure has a single water ligand at pH 5.0, a single hydroxide ligand at pH 10.0, and a mixture of species at pH 7.0 including five-coordinate hydroxide-bound, and six-coordinate structures. The five-coordinate aquo structure at pH 5 is supported by spectral similarity to acidic horseradish peroxidase (pH 3.1), whose MCD data are reported herein for the first time, and acidic myoglobin (pH 3.4), whose structures have been previously assigned by resonance Raman spectroscopy. The five-coordinate hydroxide structure at pH 10.0 is supported by MCD and resonance Raman data obtained here and by comparison with those of other known five-coordinate oxygen donor complexes. In particular, the MCD spectrum of alkaline ferric H93G myoglobin is strikingly similar to that of ferric tyrosinate-ligated human H93Y myoglobin, whose MCD data are reported herein for the first time, and that of the methoxide adduct of ferric protoporphyrin IX dimethyl ester (FeIIIPPIXDME). Analysis of the spectral data for ferric H25A heme oxygenase at neutral pH in the context of the spectra of other five-coordinate ferric heme complexes with proximal oxygen donor ligands, in particular the p-nitrophenolate and acetate adducts of FeIIIPPIXDME, is most consistent with ligation by a carboxylate group of a nearby glutamyl (or aspartic) acid residue.  相似文献   

3.
Hemoglobin St Louis beta28 (B10) Leu replaced by Gln is a new mutant which occurs as a natural valency hybrid (alpha2beta+2), or hemoglobin M (Cohen-Solal, M., Seligmann, M., Thillet, J. and Rosa, J. (1973) FEBS Lett. 33, 37-41). The electron paramagnetic resonance (EPR) spectrum of native Hb St Louis at pH 6.2 shows a mixture of three species. Two are high spin, one with tetragonal symmetry, like Hb+ A, the other with rhombic distortion. The third is a low-spin form corresponding to a hemichrome with the distal (E7) histidine as the sixth ligand of the ferric iron. The hemichrome is also found in red blood cells. After oxidation to the alpha+2beta+2 form, three EPR species are seen. Surprisingly, there remains only one high-spin signal, with almost tetragonal symmetry. Besides the low-spin hemichrome, a hydroxy signal is observed even at pH 6.2. These observations imply interactions between the alpha and beta hemes.  相似文献   

4.
A Levy  P Kuppusamy  J M Rifkind 《Biochemistry》1990,29(40):9311-9316
Electron paramagnetic resonance spectra of methemoglobin reveal that, in addition to the major tetragonal high-spin aqueous complex and the low-spin hydroxide complex, three other complexes associated with the interaction of the distal histidine are resolved. These are a rhombic high-spin and two classes of low-spin bis-histidine complexes. By freeze-quenching experiments it is shown that the rhombic high-spin and one of the low-spin bis-histidine complexes (B) are at equilibrium with the dominant species. Incubation in the 210-260 K temperature range shifts the total equilibrium toward a low-energy state with the distal histidine coordinated to the iron (complex C).  相似文献   

5.
The 1H NMR spectrum of the low-spin, cyanide-ligated ferric complex of the myoglobin from the mollusc Aplysia limacina has been investigated. All of the resolved resonances from both the hemin and the proximal histidine have been assigned by a combination of isotope labeling, spin decoupling, analysis of differential paramagnetic relaxation, and nuclear Overhauser (NOE) experiments. The pattern of the heme contact shifts is unprecedented for low-spin ferric hemoproteins in exhibiting minimal rhombic asymmetry. This low in-plane asymmetry is correlated with the X-ray-determined orientation of the proximal histidyl imidazole plane relative to the heme and provides an important test case for the interpretation of hyperfine shifts of low-spin ferric hemoproteins. The bonding of the proximal histidine is shown to be similar to that in sperm whale myoglobin and is largely unperturbed by conformational transitions down to pH approximately 4. The two observed conformational transitions appear to be linked to the titration of the two heme propionate groups, which are suggested to exist in various orientations as a function of both pH and temperature. Heme orientational disorder in the ratio 5:1 was demonstrated by both isotope labeling and NOE experiments. The exchange rate with bulk water of the proximal histidyl labile ring proton is faster in Aplysia than in sperm whale myoglobin, consistent with a greater tendency for local unfolding of the heme pocket in the former protein. A similar increased heme pocket lability in Aplysia myoglobin has been noted in the rate of heme reorientation [Bellelli, A., Foon, R., Ascoli, F., & Brunori, M. (1987) Biochem. J. 246, 787-789].  相似文献   

6.
Solution properties of the iron-(III) 'picket-fence-like' porphyrin, Fe(III)-alpha,alpha,alpha, beta-tetra-ortho (N-methyl-isonicotinamidophenyl) porphyrin, (Fe(III)PFP) were investigated. These were acid/base properties of the aquo complex with pKa of 3.9 and its aggregation (formation of dimer with K = 1 X 10(-10) dm3 mol-1), complex formation with cyanide ions and 1-methyl imidazole (1-MeIm), spectral properties of the three iron complexes in their ferric and ferrous form and the one-electron reduction potential of these complexes. Knowing these properties, the reaction of the ferric complexes, aquo, dicyano and bis (1-MeIm), with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the iron (III) aquo complex which governs the catalytic efficiency of the metalloporphyrin upon the disproportionation of the superoxide radical was 7.6 X 10(7) dm3 mol-1 s-1, two orders of magnitude faster when compared to the reaction of each of the other complexes. The reduction by other radicals with all iron (III) complexes had similar second-order rate constants (10(9) to 10(10) dm3 mol-1 s-1). The reduction reaction in all cases produced Fe(II)PEP and no intermediate was found. The oxidation reaction of Fe(II)PEP by O2- was one order of magnitude faster when compared to the reduction of Fe(III)PFP by the same radical. Since the reactivity of O2- toward the three iron (III) porphyrin complexes follows their reduction potentials, it is suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The reactions of the Fe(II)PFP complexes with dioxygen were also studied. The aquo complex was found to be first order in O2 and second order in Fe(II)PFP, suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The intermediate formation was corroborated by evidence of the rapid CO binding reaction to the aquo complex of Fe(II)PFP. The two other complexes reacted very slowly with O2 as well as with CO.  相似文献   

7.
The g values from low-spin ferric hemes can be related through the t2g hole model to rhombic (V/lambda) and tetragonal (delta/lambda) ligand field components and to the lowest Kramer's doublet energy (E/lambda). The latter is also a measure of unpaired electron sharing among the iron 3d (t2g) orbitals. For a series of ligands (X), there is a monotonic increase in myoglobin complex (Mb . X) [E/lambda] values with nonheme hexacoordinate metal complex (M . X6) [eg-t2gPg] orbital separations. As the aqueous solution pKa values of the sulfurous or nitrogenous ligands in model heme complexes increase, values of V/lambda and delta/lambda increase linearly, but those of [E/lambda] decrease linearly. The greater the electron-acceptor ability of the ligand, as suggested by its position in the spectrochemical series or its pKa, the more the unpaired electron sharing among the heme t2g orbitals increases. The rate of change of [E/lambda] with V/lambda and the pKa is different with sulfurous and nitrogenous ligands, and the magnitude of both rates increases with two sulfurs less than sulfur and nitrogen less than two nitrogens bound to the heme. The maximum magnitude of this rate with V/lambda for cytochrome P-450 is four times less than that for myoglobin, which may explain, in part, the differences in ligand binding between these two hemeproteins. The perturbation of [E/lambda], V/lambda, and delta/lambda induced by strain of iron-ligand bonds is quantitated for several hemeproteins and heme models. In addition, energy level comparisons suggest that the largest-magnitude g value falls approximately along the iron-chlorin ring normal. This suggestion implies that the electron distribution of the iron at the catalytic sites of cytochrome P-450 and certain chlorin-containing enzymes is in some way similar, but distinct from that at the transport site of myoglobin.  相似文献   

8.
The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (HbNO) and nitrosyl myoglobin (MbNO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show two classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N(NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species.  相似文献   

9.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm.  相似文献   

10.
Electron nuclear double resonance (ENDOR) spectroscopy has been used to study protons in nitrosyl horse heart myoglobin (MbNO). (1)H ENDOR spectra were recorded for different settings of the magnetic field. Detailed analysis of the ENDOR powder spectra, using computer simulation, based on the "orientation-selection" principle, leads to the identification of the available protons in the heme pocket. We observe hyperfine interactions of the N(HisF8)-Fe(2+)-N(NO) complex with five protons in axial and with eight protons in the rhombic symmetry along different orientations, including those of the principal axes of the g-tensor. Protons from His-E7 and Val-E11 residues are identified in the two symmetries, rhombic and axial, exhibited by MbNO. Our results indicate that both residues are present inside the heme pocket and help to stabilize one particular conformation.  相似文献   

11.
It is shown that nitrogen dioxide oxidizes thiamine to thiamine disulfide, thiochrome, and oxodihydrothiochrome (ODTch). The latter is formed during oxidation of thiochrome by nitrogen dioxide. Nitrogen dioxide was produced by incubation of nitrite with horse ferric myoglobin and human hemoglobin in the presence of hydrogen peroxide. After addition of tyrosine or phenol to aqueous solutions containing oxoferryl forms of the hemoproteins, thiamine, and nitrite, the yield of thiochrome greatly increased, whereas the yield of ODTch decreased. In the presence of high concentrations of tyrosine or phenol compounds ODTch was not formed at all. The neutral form of thiamine with the closed thiazole cycle and minor tricyclic form of thiamine do not enter the heme pocket of the protein and do not interact with the oxoferryl heme complex Fe(IV=O) or porphyrin radical. The tricyclic form of thiamine is oxidized to thiochrome by tyrosyl radicals located on the surface of the hemoprotein. The thiol form of thiamine is oxidized to thiamine disulfide by both hemoprotein tyrosyl radicals and oxoferryl heme complexes. Nitrite and also tyrosine, tyramine, and phenol readily penetrate into the heme pocket of the protein and reduce the oxyferryl complex to ferric cation. These reactions yield nitrogen dioxide as well as tyrosyl and phenoxyl radicals of tyrosine molecules and phenol compounds, respectively. Tyrosyl and phenoxyl radicals of low molecular weight compounds oxidize thiamine only to thiochrome and thiamine disulfide. The effect of oxoferryl forms of myoglobin and hemoglobin, nitrogen dioxide, and phenol on thiamine oxidative transformation as well as antioxidant properties of the hydrophobic thiamine metabolites thiochrome and ODTch are discussed.  相似文献   

12.
The microenvironment of the iron in a sea turtle Dermochelys coriacea myoglobin is studied using the spectroscopic techniques EPR and optical absorption. Optical absorption spectra in the visible region suggest a great homology between turtle Mb and other myoglobins, such as those from whale, human and elephant. The pK of the acid-alkaline transition is 8.4 slightly lower than the pK of whale and equal to that of elephant myoglobin. The EPR spectrum at pH 7.0 is characteristic of a high-spin configuration with axial symmetry (gx = gy = 5.95). At higher pH, this signal changes in a way different from that observed for whale myoglobin. We observe for turtle Mb both the formation of a low-spin configuration with rhombic symmetry (gx = 2.56, gy = 2.20, gz = 1.90) and of a high-spin species with rhombic distortion (gx = 6.79, gy = 5.18, gz = 2.12). This suggests a lowering of symmetry at the haem, so that now the x and y directions are no more equivalent. This can be explained by amino acid substitution at the distal positions of haem or to off-axial positioning of distal residues. The coexistence at high pH (pH 11.0) of these two spin forms could be explained by the existence of two protein conformations, in which the crystal field splitting factor, delta, and the electron exchange energy are of the same order, allowing the presence of different configurations simultaneously. The presence of different kinds of haem is ruled out by the experiments with nitrosyl turtle Mb and turtle Mb-F showing spectra very similar to those of whale myoglobin. The pk of the acid-alkaline transition, 8.5, obtained from EPR spectra, agrees very well with results from optical absorption.  相似文献   

13.
A dichroic microspectrophotometer was used to measure isotropic and dichroic absorbance spectra of this unique cytoplasmic hemoglobin and its derivatives. A perfusion slide enabled changing the media bathing the Mermis head. The native spectrum, which has an exceptionally low alpha-band extinction, was shown to be entirely due to oxyhemoglobin. The CO-hemoglobin spectrum is more typical, however, the alpha- and beta-bands are unusually closely spaced. A ferric hemochrome was formed on oxidation with ferricyanide or hydroxylamine and was readily converted to ferric hemoglobin cyanide on adding cyanide. Aquoferric hemoglobin and ferric hemoglobin fluoride were not easily formed. Deoxyhemoglobin, identified by its typical absorption spectrum, was formed only under the extremely low O2 pressures attainable in the presence of dithionite. A glucose oxidase, catalase solution deoxygenated hemoglobin in human erythrocytes but not in adjacent Mermis preparations. The affinity for O2 is much greater than for CO. Also, spectral evidence points to an oxyheme environment that is different than in vertebrate hemoglobin and myoglobin. The polarization ratio (PR) magnitude and the PR spectrum were unaffected by perfusion with high refractive index solvents; therefore, form dichroism due to the rodlike crystals is negligible. Maximum extinction is approximately perpendicular to the long axis of the microscopic crystals, which are oriented parallel to the body axis within the hypodermal cells. The PR spectra of the hemoglobin derivatives strongly resemble the corresponding spectra previously reported of single crystals made of horse hemoglobin, whale myoglobin, or Aplysia myoglobin and change appropriately when the ligand is changed. This confirms that the intracellular crystals of Mermis are of oxyhemoglobin.  相似文献   

14.
The behavior of ferrihemoglobin and ferrimyoglobin in widely varying concentrations of the lowest four alcohols has been studied by optical and electron paramagnetic resonance absorption spectroscopy. Methanol and ethanol, at concentrations too low to cause general conformational destabilization of the protein, produce both optical and electron paramagnetic resonance absorption spectral changes in ferrihemoglobin. These changes arise from equilibrium associations, characterized by dissociation constants at 25 degrees C of about 40 and 200 mM, respectively, for the methanol-ferrihemoglobin and ethanol-ferrihemoglobin complexes so formed. Other optical spectral changes appear when the methanol concentration exceeds 3.5 M and the ethanol, 1.0 M. At concentrations lower than 0.5 M, 1- and 2-propanol produce spectral changes of this second kind. At room temperature no optical evidence has been found that the propanols associate with ferrihemoglobin in the manner of methanol and ethanol. Methanol and ethanol at low concentration have specific effects, characterized by electron paramagnetic resonance spectral differences, upon ferric alphaSH chains. All four alcohols, over a wide range of concentrations, reduce the symmetry of electron paramagnetic resonance spectra from frozen solutions of ferrihemoglobin; even at the high end of this concentration range, none of the alcohols reduces the symmetry of electron paramagnetic resonance spectra from frozen ferrimyoglobin. Ferrimyoglobin and catalase association with methanol is measurable optically; the binding is about five and sixty times weaker, respectively, for these two proteins as compared with ferrihemoglobin.  相似文献   

15.
Horse heart ferric cytochrome c was investigated by the following three methods: (I) Light absorption spectrophotometry at 23 degrees C and 77 degrees K; (II) Electron paramagnetic resonance (EPR) spectroscopy at 20 degrees K; (III) Precise equilibrium measurements of ferric cytochrome c with azide and imidazole between 14.43 and 30.90 degrees C. I and II have demonstrated that: (1) Ferric cytochrome c azide and imidazole complexes were in the purely low spin state between 20 degrees K and 23 degrees C; (2) The energy for the three t2g orbitals calculated in one hole formalism shows that azide or imidazole bind to the heme iron in a similar manner to met-hemoglobin azide or imidazole complexes, respectively. III has demonstrated that: (1) The change of standard enthalpy and that of standard entropy were -2.3 kcal/mol and -1.6 cal/mol per degree for the azide complex formation, and -1.4 kcal/mol and 2.9 cal/mol per degree for the imidazole complex formation. (2) A linear relationship between the change of entropy and that of enthalpy was observed for the above data for the cyanide complex formation. The complex formation of ferric cytochrome c was discussed based on the results of X-ray crystallographic studies compared with hemoglobin and myoglobin.  相似文献   

16.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. EPR spectra of human granulocytes (4 - 10(8) cells per ml) show an intense high-spin ferric heme signal with rhombic symmetry (gx = 6.90 and gy = 5.07) for the heme group. These g-values are identical to those of partially purified myeloperoxidase and thus the signal is derived from ferric myeloperoxidase. In chicken granulocytes, which contain little or no myeloperoxidase, only an axial type of heme iron signal, weak in intensity, can be detected at g = 6.0. 2. Upon phagocytosis of latex particles by human granulocytes the high-spin heme signal with rhombic symmetry is slowly converted into a signal with axial symmetry (gx = gy = 6.0), showing that the EPR signals of myeloperoxidase in the intact cell can be used to study the involvement of the enzyme in metabolic changes during phagocytosis.  相似文献   

18.
Kinetic studies of spin interconversion in various derivatives of metmyoglobin such as the fluoride, aquo, hydroxide, azide, imidazole, and cyanide were performed by the coaxial-cable temperature-jump method. For all these derivatives, except fluoride and aquomyoglobin, a single relaxation was observed around 3 μsec. The rate constants and activation parameters for the spin interconversion were estimated and are discussed in comparison with those reported for the reaction of synthetic iron complex. Other hemoproteins such as cytochrome c and human hemoglobin were also examined, and the results were compared with those for myoglobin. The effect of buffer solution is also discussed.  相似文献   

19.
Dawson JH  Pond AE  Roach MP 《Biopolymers》2002,67(4-5):200-206
Recent ligand binding and spectroscopic investigations of the myoglobin H93G cavity mutant are reviewed, revealing it to be a versatile template for the preparation of model heme complexes of defined structure. The H93G myoglobin cavity mutant is shown to be capable of forming mixed ligand adducts because of the difference in accessibility of the two sides of the ferric heme iron. With imidazole bound in the proximal cavity, H93G myoglobin also forms reasonably stable oxyferrous and oxoferryl derivatives, thereby providing a potential system to use for the study of such complexes with proximal ligands other than imidazole. In addition, thiolate-ligated ferric H93G derivatives are described that serve as spectroscopic models for the high-spin ferric state of cytochrome P450. All of the complexes described are characterized with magnetic circular dichroism spectroscopy, and they are compared to the appropriate derivatives of native myoglobin and P450.  相似文献   

20.
In this article, we have extensively studied and discussed the magnetic properties of acidic ferric hemoglobin and its isolated chains. The magnetic susceptibility, EPR and optical spectra of those samples were measured in the temperature region below 77 degrees K. By the magnetic susceptibility measurements, it could be made clear that at an acidic pH value, both ferric hemoglobin and its isolated chains were constituted of a mixture of two spin states (high-spin state S = 5/2 and low-spin state S = 1/2) and the ratio of this mixture varied in each protein sample, but was independent of the temperature change below 77 degrees K. The co-existence of these two components could be ascertained by the observation of EPR spectra at liquid hydrogen temperature. Acidic ferric hemoglobin and its isolated chains exhibited the two components of EPR spectra which corresponded to their magnetic susceptibility, and it was found that the relaxation time of the low-spin state was longer than that of the high-spin state. The low-spin component of EPR spectra was almost undetectable at liquid nitrogen temperature. The three principal g values of this low-spin were gz = 2.80, gy = 2.20, and gx = 1.70. At alkaline pH values these low-spin components and the high-spin component of EPR spectra were displaced by the different low-spin spectra which corresponded to the ferric hemoglobin-hydroxide complex. It seems that the magnetic properties of the high-spin component are the same as the acidic ferric myoglobin, and the fine structure of the iron ion also seems to be same. Optical spectroscopy also gave similar magnetic properties which corresponded to the magnetic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号