首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labelling studies with N-ETHYLMALEIMIDE SHOW THAT EITHER IN THE PRESENCE OF Mg2+, thiamine pyrophosphate (TPP) and pyruvate or in the presence of NADH the overall activity of the pyruvate dehydrogenase complex from Azotobacter vinelandii is inhibited without much inhibition of the partial reactions. The complex undergoes a conformational change upon incubation with NADH. The inhibition by bromopyruvate is less specific. Specific incorporation of a fluorescent maleimide derivative was observed on the two transacetylase isoenzymes. Binding studies with a similar spin label analogue show that 3 molecules/FAD are incorporated by incubation of pyruvate, Mg2+ and TPP, whereas 2 molecules/FAD are incorporated via incubation with NADH. The spin label spectra support the idea that in the complex the active centres of the component enzymes are connected by rapid rotation of the lipoyl moiety. Three acetyl groups are incorporated in the complex by incubation with [2-14C]pyruvate. Time-dependent incorporation supports the view that the two transacetylase isoenzymes react in non-identical ways with the pyruvate dehydrogenase components of the complex. The results show that the complex contains 2 low-molecular-weight transacetylase molecules and 4 molecules of the high-molecular-weight isoenzyme. Mn2+-binding studies show that the complex binds 10 ions, with different affinities. 2 Mn2+ ions are bound with a 20-fold higher affinity than the remaining 8 Mn2+ ions. The latter 8 ions bind with equal affinities and are thought to reflect binding to the pyruvate dehydrogenase components of the complex. It is concluded that the complex contains 8 pyruvate dehydrogenase molecules, 4 high-molecular-weight transacetylase molecules, 2 low-molecular-weight transacetylase molecules and 1 dimeric (2-FAD-containing) symmetric molecule of lipoamide dehydrogenase. Evidence comes from pyruvate-dependent inactivation and labelling studies that the pyruvate dehydrogenase components contain either an - SH group or an S-S bridge which participates in the hydroxyethyl transfer to the transacetylase components.  相似文献   

2.
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.  相似文献   

3.
Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents.  相似文献   

4.
When oxidized to cysteic acid by performic acid or converted to carboxymethylcysteine by alkylation of the reduced enzyme with iodoacetate, a total of six half-cystine residues/subunit are found in L-threonine dehydrogenase (L-threonine: NAD+ oxidoreductase, EC 1.1.1.103; L-threonine + NAD(+)----2-amino-3-oxobutyrate + NADH) from Escherichia coli K-12. Of this total, two exist in disulfide linkage, whereas four are titratable under denaturing conditions by dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), or p-mercuribenzoate. The kinetics of enzyme inactivation and of modification by the latter two reagents indicate that threonine dehydrogenase has no free thiols that selectively react with bulky compounds. While incubation of the enzyme with a large excess of iodoacetamide causes less than 10% loss of activity, the native dehydrogenase is uniquely reactive with and completely inactivated by iodoacetate. The rate of carboxymethylation by iodoacetate of one -SH group/subunit is identical with the rate of inactivation and the carboxymethylated enzyme is no longer able to bind Mn2+. NADH (0.5 mM) provides 40% protection against this inactivation; 60 to 70% protection is seen in the presence of saturating levels of NADH plus L-threonine. Such results coupled with an analysis of the kinetics of inactivation caused by iodoacetate are interpreted as indicating the inhibitor first forms a reversible complex with a positively charged moiety in or near the microenvironment of a reactive -SH group in the enzyme before irreversible alkylation occurs. Specific alkylation of one -SH group/enzyme subunit apparently causes protein conformational changes that entail a loss of catalytic activity and the ability to bind Mn2+.  相似文献   

5.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.  相似文献   

6.
The character of allosteric inhibition of glutamate dehydrogenase by GTP was studied. The derivative of the enzyme not capable of being polymerized was taken as a model. It was shown that: in the absence of NADH every protomer of this derivative can bind one molecule of GTP; in the presence of NADH the additional binding site for GTP was induced; the modification of the enzyme derivative by pyridoxal-5-phosphate in the presence of NADH and alpha-ketoglutarate blocked the NADH-induced GTP binding site and the disappearance of positive kinetic cooperativity induced by GTP was observed; to achieve the inhibitory action of GTP the binding of the effector to only one (NADH-induced) site was enough; the role of GTP binding to the NADH-induced site is to provide better affinity of the effector to the "inhibitory" centre; the positive kinetic cooperativity of inhibition of glutamate dehydrogenase by GTP depends probable on the cooperative character of interaction between the two molecules of GTP to each protomer of the enzyme.  相似文献   

7.
Crystalline d-glyceraldehyde 3-phosphate dehydrogenase from lobster tail contains 4 moles of NAD(+) bound and reacts specifically with 4 moles of iodoacetic acid/mole of tetramer. The essential thiol group of d-glyceraldehyde 3-phosphate dehydrogenase appears to react with iodoacetic acid with a rate constant for the overall process that is independent of the extent of carboxymethylation. The d-glyceraldehyde 3-phosphate dehydrogenase-NAD(+) absorption band has a variable molar extinction coefficient in the presence of phosphate that may be correlated with a proton dissociation of pK 6.86. The binding of NAD(+) to d-glyceraldehyde 3-phosphate dehydrogenase weakens as alkylating agents react with the enzyme, and NAD(+) promotes the reactivity of the essential thiol group. It is suggested that, on binding to d-glyceraldehyde 3-phosphate dehydrogenase, NAD(+) lowers the pK of the essential thiol group, resulting in a catalytic role of NAD(+) in the reaction catalysed by d-glyceraldehyde 3-phosphate dehydrogenase. If this theory is correct, then it is likely that a proton will be liberated during the phosphorolysis of the acyl-enzyme rather than in the redox step.  相似文献   

8.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

9.
Although the enzyme UDP-glucose dehydrogenase from beef liver (E.C. 1.1.1.22) is known to abstract the pro-R hydrogen stereospecifically at carbon 6 of the glucose moiety of the substrate by a reversible step in converting UDP-glucose to UDP-alpha-D-gluco-hexodialdose (UDP-Glc-6-CHO), prolonged incubation of the enzyme with UDP-glucose and tritium-labeled NADH, under conditions favoring hydrogen exchange between the two, results in equivalent labeling of both hydrogens at carbon 6. This shows that the pro-S hydrogen at carbon 6 is also abstracted by a reversible process which must then involve a derivative of the carboxyl group of UDP-glucuronic acid (UDP-GlcUA) that is capable of reversible hydrogenation-dehydrogenation. It is the hydrolysis of this derivative that accounts for the well known irreversibility of the overall reaction. Derivatization of the enzyme's essential thiol group with 5,5'-dithiobis-(2-nitrobenzoate) eliminates the ability of the enzyme to either oxidize or reduce UDP-Glc-6-CHO. Replacement of the 5-thio-2-nitrobenzoate group with cyanide fully restores the enzyme's capacity to reduce UDP-Glc-6-CHO but has no effect on the inhibition of the oxidation to UDP-GlcUA. This indicates that the essential thiol group is involved in the second reversible dehydrogenation step and serves to form a thiol ester with the carboxyl of the product, UDP-GlcUA. It is suggested that thiol ester intermediates are a general characteristic of all 4-electron NAD-linked dehydrogenase reactions.  相似文献   

10.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

11.
1. Pig heart lactate dehydrogenase is inhibited by addition of one equivalent of diethyl pyrocarbonate. The inhibition is due to the acylation of a unique histidine residue which is 10-fold more reactive than free histidine. No other amino acid side chains are modified. 2. The carbethoxyhistidine residue slowly decomposes and the enzyme activity reappears. 3. The essential histidine residue is only slightly protected by the presence of NADH but is completely protected when substrate and substrate analogues bind to the enzyme-NADH complex. The protection is interpreted in terms of a model in which substrates can only bind to the enzyme in which the histidine residue is protonated and is thus not available for reaction with the acylating agent. 4. The apparent pK(a) of the histidine residue in the apoenzyme is 6.8+/-0.2. In the enzyme-NADH complex it is 6.7+/-0.2. 5. Acylated enzyme binds NADH with unchanged affinity. The enzyme is inhibited because substrates and substrate analogues cannot bind at the acylated histidine residue in the enzyme-NADH complex.  相似文献   

12.
Methyl methanethiosulphonate was used to produce a modification of the essential thiol group in lactate dehydrogenase which leaves the enzyme catalytically active. Methyl methanethiosulphonate produced a progressive inhibition of enzyme activity, with 2mM-pyruvate and 0.14mM-NADH as substrates, which ceased once the enzyme had lost 70-90% of its activity. In contrast, with 10mM-lactate and 0.4mM-NAD+ as substrates the enzyme was virtually completely inhibited. The observed inhibition was critically dependent on the chosen substrate concentration, since methanethiolation with methyl methanethiosulphonate resulted in a large decrease in affinity for pyruvate. At 0.14mM-NADH, methanethiolation increased the apparent KmPyr from from 40micronM for the control enzyme to 12mM for the modified enzyme. Steady-state kinetics showed that there was not a statistically significant change in either KmNADH or KsNADH. At saturating NADH and pyruvate concentrations, the Vmax. was virtually unaffected for the methanethiolated enzyme. However, a decrease in Vmax. was observed when the modified enzyme was incubated in dilute solution. The modification of lactate dehydrogenase by methyl methanethiosulphonate involved the active site, since inhibition was completely prevented by substrate-analogue pairs such as NADH and oxamate or NAD+ and oxalate. The formation of complexes between methanethiolated lactate dehydrogenase and substrates or substrate analogues can also be shown by re-activation experiments. The methanethiolated enzyme was re-activated in a time-dependent reaction by dithiothreitol and this was prevented by oxamate, by NADH and by NADH plus oxamate in increasing order of effectiveness. The results of this work are interpreted in terms of a role for the essential thiol group in the binding of substrates.  相似文献   

13.
A simple methoxylated derivative of the triazine dye, Procion blue H-B, selectively precipitates rabbit muscle lactate dehydrogenase from solution. Optimum protein precipitation occurred at an enzyme subunit:dye ratio of approximately 2:1 and was fully reversible upon addition of competitive ligands such as NADH. With a crude extract of rabbit muscle, affinity precipitation with the dye followed by dissolution with NADH yielded homogeneous lactate dehydrogenase in 97% overall yield.  相似文献   

14.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is covalently modified by NAD in the presence of nitric oxide (NO) and dithiothreitol. Replacement of NAD with NADH in the presence of SIN-1 (3-morpholinosydnonimine) and dithiothreitol increased modification 25-fold. We now demonstrate that in contrast to NO-mediated attachment of NAD, covalent attachment of NADH to GAPDH proceeds in the presence of low molecular weight thiols, independent of NO. Removal of oxygen and transition metal ions inhibited modification, consistent with a role for reactive oxygen species; inhibition by superoxide dismutase, stimulation by xanthine oxidase/hypoxanthine, and the lack of an effect of catalase supported the hypothesis that superoxide, generated from thiol oxidation, was involved. Electrospray mass spectrometry showed covalent linkage of the NADH molecule to GAPDH. Characterization of the product of phosphodiesterase cleavage demonstrated that linkage to GAPDH occurred through the nicotinamide of NADH. Lys-C digestion of GAPDH, followed by peptide isolation by high performance liquid chromatography, matrix-assisted laser desorption ionization time-of-flight analysis, and Edman sequencing, demonstrated that NADH attachment occurred at Cys-149, the active-site thiol. This thiol linkage was stable to HgCl2. Thus, linkage of GAPDH to NADH, in contrast to NAD, occurs in the presence of thiol, is independent of NO, and is mediated by superoxide.  相似文献   

15.
1. Sheep liver cytoplasmic aldehyde dehydrogenase can be purified from contamination with the mitochondrial form of the enzyme by pH-gradient ion-exchange chromatography. The method is simple, reproducible and efficient. 2. The purified cytoplasmic enzyme retains about 2% of its original activity in the presence of a large excess of disulfiram. This suggests that the disulfiram-reactive thiol groups are not essential for covalent interaction with the aldehyde substrate during catalysis, as has sometimes been suggested. 3. Between 1.5 and 2.0 molecules of disulfiram per tetrameric enzyme molecule account for the observed loss of activity, suggesting that the enzyme may have only two functional active sites. 4. Experiments show that disulfiram-modified enzyme retains the ability to bind NAD+ and NADH.  相似文献   

16.
Chicken liver d-3-phosphoglycerate dehydrogenase was effectively inhibited at 25 °C by micromolar concentrations of N-ethyl-, N-butyl-, N-pentyl-, N-heptyl-, and N-phenylmaleimide. The rates of inactivation of the enzyme did not vary with chain length of the N-alkylmaleimide derivative. Saturation kinetics in the same concentration range was observed with each maleimide derivative studied. A maximum pseudo-first-order rate constant of 0.1 min?1 was determined for all of the maleimide inactivation reactions. Compounds shown to bind at the coenzyme binding site such as NAD, 3-aminopyridine adenine dinucleotide, adenosine diphosphoribose, and adenosine diphosphate did not protect the enzyme against N-ethylmaleimide inactivation. AMP was demonstrated to be a substrate-competitive inhibitor of the enzyme. AMP and 3-phosphoglycerate both effectively protected the enzyme against N-ethylmaleimide inactivation. Diazotized 3-aminopyridine adenine dinucleotide, a sulfhydryl modifying, site-labeling reagent for several pyridine nucleotide-dependent enzymes, did not inactivate the phosphoglycerate dehydrogenase but functioned rather as a reversible coenzyme-competitive inhibitor.  相似文献   

17.
M Tagaya  T Fukui 《Biochemistry》1986,25(10):2958-2964
Pyridoxal phosphate reacts with not only the lysyl residue(s) essential for enzymatic activity but also other reactive lysyl residues in rabbit muscle lactate dehydrogenase (EC 1.1.1.27). To raise the specificity of pyridoxal phosphate, adenosine diphospho-, triphospho-, and tetraphosphopyridoxals have been newly synthesized and used for modification of the enzyme. Incubation of the enzyme for 30 min with the diphospho, triphospho, and tetraphospho compounds all at 1 mM followed by reduction by sodium borohydride resulted in the loss of enzymatic activity by 64, 51, and 34%, respectively. NADH almost completely protected the enzyme from inactivation, whereas pyruvate showed no protection. Binding of the reagents to the enzyme subunit in an equimolar amount corresponds to the complete inactivation. The adenosine diphosphopyridoxal modified enzymes with different residual activities were chromatographed on a Blue Toyopearl affinity column. The results showed the presence of at least four enzyme species besides the intact enzyme that are significantly different from one another in the amount of the reagent bound, the affinity for NADH, and the specific activity. The decrease in the affinity of the enzyme for NADH and the loss of enzymatic activity paralleled in the modification by adenosine diphosphopyridoxal, whereas, in the modification by pyridoxal phosphate, the decrease in the affinity for NADH preceded the inactivation. It is concluded that modification by adenosine polyphosphopyridoxal compounds are specific for the active site lysyl residue(s) in lactate dehydrogenase.  相似文献   

18.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

19.
The binding of NAD(+) and NADH to bovine liver UDP-glucose dehydrogenase was studied by using gel-filtration and fluorescence-titration methods. The enzyme bound 0.5mol of NAD(+) and 2 mol of NADH/mol of subunit at saturating concentrations of both substrate and product. The dissociation constant for NADH was 4.3mum. The binding of NAD(+) to the enzyme resulted in a small quench of protein fluorescence whereas the binding of NADH resulted in a much larger (60-70%) quench of protein fluorescence. The binding of NADH to the enzyme was pH-dependent. At pH8.1 a biphasic profile was obtained on titrating the enzyme with NADH, whereas at pH8.8 the titration profile was hyperbolic. UDP-xylose, and to a lesser extent UDP-glucuronic acid, lowered the apparent affinity of the enzyme for NADH.  相似文献   

20.
The 2',3'-dialdehyde derivative of NADPH (oNADPH) acts as a coenzyme for the reaction catalyzed by bovine liver glutamate dehydrogenase. Incubation of 250 microM oNADPH with enzyme for 300 min at 30 degrees C and pH 8.0 yields covalent incorporation of 1.0 mol of oNADPH/mol of enzyme subunit. The modified enzyme has a functional catalytic site and is activated by ADP, but is no longer inhibited by high NADH concentrations and exhibits decreased sensitivity to GTP inhibition. Using the change in inhibition by 600 microM NADH or 1 microM GTP to monitor the reaction leads to rate constants of 44.0 and 41.5 min-1 M-1, respectively, suggesting that loss of inhibition by the two regulatory compounds results from reaction by oNADPH at a single location. The oNADPH incorporation is proportional to the decreased inhibition by 600 microM NADH or 1 microM GTP, extrapolating to less than 1 mol of oNADPH/mol of subunit when the maximum change in NADH or GTP inhibition has occurred. Modified enzyme is still 93% inhibited at saturating levels of GTP, although its K1 is increased 20-fold to 4.6 microM. The kinetic effects caused by oNADPH are not prevented by alpha-ketoglutarate, ADP, 5 mM NADH, or 200 microM GTP alone, but are prevented by 5 mM NADH with 200 microM GTP. Incorporation of oNADPH into enzyme at 255 min is 0.94 mol/mol of peptide chain in the absence of ligands but only 0.53 mol/mol of peptide chain in the presence of the protectants 5 mM NADH plus 200 microM GTP. These results indicate that oNADPH modifies specifically about 0.4-0.5 sites/enzyme subunit or about 3 sites/enzyme hexamer and that reaction occurs at a GTP-dependent inhibitory NADH site of glutamate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号