共查询到20条相似文献,搜索用时 15 毫秒
1.
Truncated K+ channel DNA sequences specifically suppress lymphocyte K+ channel gene expression. 总被引:3,自引:1,他引:3 下载免费PDF全文
We have constructed a series of deletion mutants of Kv1.3, a Shaker-like, voltage-gated K+ channel, and examined the ability of these truncated mutants to form channels and to specifically suppress full-length Kv1.3 currents. These constructs were expressed heterologously in both Xenopus oocytes and a mouse cytotoxic T cell line. Our results show that a truncated mutant Kv1.3 must contain both the amino terminus and the first transmembrane-spanning segment, S1, to suppress full-length Kv1.3 currents. Amino-terminal-truncated DNA sequences from one subfamily suppress K+ channel expression of members of only the same subfamily. The first 141 amino acids of the amino-terminal of Kv1.3 are not necessary for channel formation. Deletion of these amino acids yields a current identical to that of full-length Kv1.3, except that it cannot be suppressed by a truncated Kv1.3 containing the amino terminus and S1. To test the ability of truncated Kv1.3 to suppress endogenous K+ currents, we constructed a plasmid that contained both truncated Kv1.3 and a selection marker gene (mouse CD4). Although constitutively expressed K+ currents in Jurkat (a human T cell leukemia line) and GH3 (an anterior pituitary cell line) cells cannot be suppressed by this double-gene plasmid, stimulated (up-regulated) Shaker-like K+ currents in GH3 cells can be suppressed. 相似文献
2.
3.
Clay JR 《European biophysics journal : EBJ》2000,29(7):555-557
Potassium ion channels are generally believed to have current-voltage (IV) relations which are linearly related to driving force ( V - E(K)), where V is membrane potential and E(K) is the potassium ion equilibrium potential. Consequently, activation curves for K+ channels have often been measured by normalizing voltage-clamp families of macroscopic K+ currents with (V - E(K)), where V is the potential of each successive step in the voltage clamp sequence. However, the IV relation for many types of K+ channels actually has a non-linear dependence upon driving force which is well described by the Goldman-Hodgkin-Katz relation. When the GHK dependence on (V - E(K)) is used in the normalization procedure, a very different voltage dependence of the activation curve is obtained which may more accurately reflect this feature of channel gating. Novel insights into the voltage dependence of the rapidly inactivating I(A) channels Kv1.4 and Kv4.2 have been obtained when this procedure was applied to recently published results. 相似文献
4.
COS-1 cells with heterologeous expression of the Kir4.1 (KCNJ10) channel subunit, possess functional Kir4.1 channels and become capable to generating cytosolic Ca2+ transients, upon lowering of the extracellular K+ concentration to 2 mM or below. These Ca2+ transients are blocked by external Ba2+ (100 microM). Acute brain stem slices from wild-type mice (second post-natal week), which were loaded with the fluorescent Ca2+ indicator Oregon Green BAPTA-1-AM, were exposed to 0.2 mM K+. Under these conditions astrocytes, but not neurons, responded with cytosolic Ca2+ elevations in wild-type mice. This astrocyte-specific response has previously been used to identify astroglial cells type [R. Dallwig, H. Vitten, J.W. Deitmer, A novel barium-sensitive calcium influx into rat astrocytes at low external potassium. Cell Calcium 28 (2000) 247-259]. In Kir4.1 knock-out (Kir4.1-/-) mice, the number of responding cells was dramatically reduced and the Ca2+ transients in responding cells were significantly smaller than in wild-type mice. Our results indicate that Kir4.1 channels are the molecular substrate for the observed Ca2+ influx in astrocytes under conditions of low external K+-concentration. 相似文献
5.
Cha SK Huang C Ding Y Qi X Huang CL Miller RT 《The Journal of biological chemistry》2011,286(3):1828-1835
The Ca(2+)-sensing receptor (CaR) regulates salt and water transport in the kidney as demonstrated by the association of gain of function CaR mutations with a Bartter syndrome-like, salt-wasting phenotype, but the precise mechanism for this effect is not fully established. We found previously that the CaR interacts with and inactivates an inwardly rectifying K(+) channel, Kir4.1, which is expressed in the distal nephron that contributes to the basolateral K(+) conductance, and in which loss of function mutations are associated with a complex phenotype that includes renal salt wasting. We now find that CaR inactivates Kir4.1 by reducing its cell surface expression. Mutant CaRs reduced Kir4.1 cell surface expression and current density in HEK-293 cells in proportion to their signaling activity. Mutant, activated Gα(q) reduced cell surface expression and current density of Kir4.1, and these effects were blocked by RGS4, a protein that blocks signaling via Gα(i) and Gα(q). Other α subunits had insignificant effects. Knockdown of caveolin-1 blocked the effect of Gα(q) on Kir4.1, whereas knockdown of the clathrin heavy chain had no effect. CaR had no comparable effect on the renal outer medullary K(+) channel, an apical membrane distal nephron K(+) channel that is internalized by clathrin-coated vesicles. Co-immunoprecipitation studies showed that the CaR and Kir4.1 physically associate with caveolin-1 in HEK cells and in kidney extracts. Thus, the CaR decreases cell surface expression of Kir4.1 channels via a mechanism that involves Gα(q) and caveolin. These results provide a novel molecular basis for the inhibition of renal NaCl transport by the CaR. 相似文献
6.
7.
8.
Induction of cell surface expression of HLA antigens by human IFN-gamma encoded by recombinant vaccinia virus 总被引:1,自引:0,他引:1
M R Kohonen-Corish R V Blanden N J King 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(2):623-627
A recombinant vaccinia virus (VV) encoding human IFN-gamma (VV-huIFN-gamma) was constructed and its effects on MHC Ag expression in human and murine cells in vitro analyzed by flow cytometry. At high multiplicities of infection (5 pfu/cell) the IFN-gamma expressed by vaccinia was not able to overcome the profound decrease of MHC concentration, normally associated with VV infection, in any of the cells tested. However, at successively decreasing multiplicities of infection, a gradual increase in MHC class I concentration above control levels was observed in human 143B cells but not in murine L929 cells, thus indicating that the species specificity of IFN-gamma is preserved in VV-huIFN-gamma-infected cells. We infer from these data that the IFN-gamma secreted by infected 143B cells is able to exert an MHC upregulating effect on uninfected cells in the vicinity. Antiviral activity of the IFN-gamma expressed by the virus was also assessed. Pretreatment for 24 to 48 h of human 143B cells with IFN-gamma containing supernatants had a significant antiviral effect comparable to rhuIFN-gamma. However, when added 1 h after virus infection, antiviral activity was much less evident. Also, the IFN-gamma secreted by infected 143B cells in monolayers infected at low multiplicity did not efficiently inhibit spread of infection to other cells in the vicinity. 相似文献
9.
Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4(+) T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4(+) T cell responses have been poorly characterized, and CD4(+) T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens. 相似文献
10.
Tissue protection mediated by mitochondrial K+ channels 总被引:2,自引:0,他引:2
Two distinct K+ uniporters have been described in mitochondria, ATP-sensitive and Ca2+-activated. Both are capable of protecting tissues against ischemia and other forms of injury when active. These findings indicate a central role for mitochondrial K+ uptake in tissue protection. This review describes the characteristics of mitochondrial K+ uniport, physiological consequences of this transport, forms of tissue damage in which K+ channels are implicated and possible mechanisms through which protection occurs. 相似文献
11.
Smith AJ Partridge CJ Asipu A Mair LA Hunter M Sivaprasadarao A 《Biochemical and biophysical research communications》2006,348(3):1123-1131
ATP-sensitive potassium (KATP) channels play a central role in glucose-stimulated insulin secretion (GSIS) by pancreatic beta-cells. Activity of these channels is determined by their open probability (Po) and the number of channels present in a cell. Glucose is known to reduce Po, but whether it also affects the channel density is unknown. Using INS-1 model beta-cell line, we show that the expression of K(ATP) channel subunits, Kir6.2 and SUR1, is high at low glucose, but declines sharply when the ambient glucose concentration exceeds 5mM. In response to glucose deprivation, channel synthesis increases rapidly by up-regulating translation of existing mRNAs. The effects of glucose deprivation could be mimicked by pharmacological activation of 5'-AMP-activated protein kinase with 5-aminoimidazole-4-carboxamide ribonucleotide and metformin. Pancreatic beta-cells which have lost their ability for GSIS do not show such changes implicating a possible (patho-)physiological link between glucose-regulated KATP channel expression and the capacity for normal GSIS. 相似文献
12.
13.
Developmental analysis reveals mismatches in the expression of K+ channel alpha subunits and voltage-gated K+ channel currents in rat ventricular myocytes 下载免费PDF全文
《The Journal of general physiology》1996,108(5):405-419
In the experiments here, the developmental expression of the functional Ca(2+)-independent, depolarization-activated K+ channel currents, Ito and IK, and of the voltage-gated K+ channel (Kv) alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2 in rat ventricular myocytes were examined quantitatively. Using the whole-cell patch clamp recording method, the properties and the densities of Ito and IK in ventricular myocytes isolated from postnatal day 5 (P5), 10 (P10), 15 (P15), 20 (P20), 25 (P25), 30 (P30), and adult (8-12 wk) rats were characterized and compared. These experiments revealed that mean Ito densities increase fourfold between birth and P30, whereas IK densities vary only slightly. Neither the time- nor the voltage-dependent properties of the currents vary measurably, suggesting that the subunits underlying functional Ito and IK channels are the same throughout postnatal development. In parallel experiments, the developmental expression of each of the voltage-gated K+ channel alpha subunits, Kv1.2, Kv1.4, Kv1.5, Kv2.1, and Kv4.2, was examined quantitatively at the mRNA and protein levels using subunit-specific probes. RNase protection assays revealed that Kv1.4 message levels are high at birth, increase between P0 and P10, and subsequently decrease to very low levels in adult rat ventricles. The decrease in message is accompanied by a marked reduction in Kv1.4 protein, consistent with our previous suggestion that Kv1.4 does not contribute to the formation of functional K+ channels in adult rat ventricular myocytes. In contrast to Kv1.4, the mRNA levels of Kv1.2, Kv1.5, Kv2.1, and Kv4.2 increase (three- to five- fold) between birth and adult. Western analyses, however, revealed that the expression patterns of these subunits proteins vary in distinct ways: Kv1.2 and Kv4.2, for example, increase between P5 and adult, whereas Kv1.5 remains constant and Kv2.1 decreases. Throughout development, therefore, there is a mismatch between the numbers of Kv alpha subunits expressed and the functional voltage-gated K+ channel currents distinguished electrophysiologically in rat ventricular myocytes. Alternative experimental approaches will be required to define directly the Kv alpha subunits that underlie functional voltage- gated K+ channels in these (and other) cells. In addition, the finding that Kv alpha subunit protein expression levels do not necessarily mirror mRNA levels suggests that caution should be exercised in attempting functional interpretations of observed changes in mRNA levels alone. 相似文献
14.
The miniature viral K+ channel Kcv represents the pore module of all K+ channels. A synthetic gene of Kcv with an elevated GC content compared to that of the wild-type gene was expressed heterologously in Pichia pastoris, and the purified protein was functionally reconstituted into liposomes. Biochemical assays reveal a remarkable cation selective stability of the channel tetramer via SDS-PAGE. Only cations, which permeate Kcv, were able to protect the oligomer against disassembly into monomers at high temperatures. Electrophysiological characterization of the single Kcv channel reveals a saturating conductance (lambda(max)) of 360 pS; the single-channel current-voltage relation was strongly rectifying with a negative slope conductance at extreme voltages. The channel was highly selective for K+ and was blocked by Ba2+ and in a side specific manner by Na+ and Cs+ also. The channel conducted Rb+, but as a consequence, the channel was shifted into a hyperactive state. We conclude that specific binding interactions of cations in the conductive pathway are an important determinant of channel stability and function. 相似文献
15.
Guard cell inward K+ channel activity in arabidopsis involves expression of the twin channel subunits KAT1 and KAT2 总被引:1,自引:0,他引:1
Pilot G Lacombe B Gaymard F Cherel I Boucherez J Thibaud JB Sentenac H 《The Journal of biological chemistry》2001,276(5):3215-3221
Stomatal opening, which controls gas exchanges between plants and the atmosphere, results from an increase in turgor of the two guard cells that surround the pore of the stoma. KAT1 was the only inward K(+) channel shown to be expressed in Arabidopsis guard cells, where it was proposed to mediate a K(+) influx that enables stomatal opening. We report that another Arabidopsis K(+) channel, KAT2, is expressed in guard cells. More than KAT1, KAT2 displays functional features resembling those of native inward K(+) channels in guard cells. Coexpression in Xenopus oocytes and two-hybrid experiments indicated that KAT1 and KAT2 can form heteromultimeric channels. The data indicate that KAT2 plays a crucial role in the stomatal opening machinery. 相似文献
16.
17.
18.
19.
20.
K+ channel inactivation mediated by the concerted action of the cytoplasmic N- and C-terminal domains. 总被引:13,自引:1,他引:13 下载免费PDF全文
We have examined the molecular mechanism of rapid inactivation gating in a mouse Shal K+ channel (mKv4.1). The results showed that inactivation of these channels follows a complex time course that is well approximated by the sum of three exponential terms. Truncation of an amphipathic region at the N-terminus (residues 2-71) abolished the rapid phase of inactivation (r = 16 ms) and altered voltage-dependent gating. Surprisingly, these effects could be mimicked by deletions affecting the hydrophilic C-terminus. The sum of two exponential terms was sufficient to describe the inactivation of deletion mutants. In fact, the time constants corresponded closely to those of the intermediate and slow phases of inactivation observed with wild-type channels. Further analysis revealed that several basic amino acids at the N-terminus do not influence inactivation, but a positively charged domain at the C-terminus (amino acids 420-550) is necessary to support rapid inactivation. Thus, the amphipathic N-terminus and the hydrophilic C-terminus of mKv4.1 are essential determinants of inactivation gating and may interact with each other to maintain the N-terminal inactivation gate near the inner mouth of the channel. Furthermore, this inactivation gate may not behave like a simple open-channel blocker because channel blockade by internal tetraethylammonium was not associated with slower current decay and an elevated external K+ concentration retarded recovery from inactivation. 相似文献