首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
余泉友  房守敏  左伟东  张泽  鲁成 《昆虫学报》2010,53(10):1061-1068
谷胱甘肽-S-转移酶(GSTs)是一个功能广泛的超基因家族, 其中Zeta家族在动物、植物和细菌中均有分布。在哺乳动物中, Zeta GSTs具有马来酰乙酰乙酸异构酶(MAAI)活性, 参与苯丙氨酸/酪氨酸的代谢过程。本研究对家蚕Bombyx mori基因组中预测的GST基因(BmGSTz1)进行了表达序列标签的搜索, 经拼接后获得一条含有3′和5′非翻译区在内的长度为1 239 bp 的cDNA序列, 其3′端含有AATAAA加尾信号。BmGSTz1基因含有4个内含子, 外显子/内含子边界均符合GT-AG 规则。经TA克隆证实, BmGSTz1基因编码区序列全长648 bp, 共编码215个氨基酸。BmGSTz1推定的分子量为24.8 kD, 等电点pI为8.06。BmGSTz1与其他昆虫和哺乳动物GSTz1的氨基酸序列高度保守, 进化分析表明家蚕BmGSTz1与黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae、意大利蜜蜂Apis mellifera和赤拟谷盗Tribolium castaneum的GSTz1形成1∶1∶1∶1∶1的直系同源关系。RT-PCR和基因芯片数据表明BmGSTz1在家蚕5龄第3天幼虫各组织中都有表达。序列和组织表达特征分析结果提示家蚕BmGSTz1可能具有MAAI活性, 这将为进一步深入研究BmGSTz1基因的功能提供参考。  相似文献   

3.
Ahsan N  Lee DG  Alam I  Kim PJ  Lee JJ  Ahn YO  Kwak SS  Lee IJ  Bahk JD  Kang KY  Renaut J  Komatsu S  Lee BH 《Proteomics》2008,8(17):3561-3576
While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.  相似文献   

4.
Auxin influx carriers are involved in auxin transport and plant development. Here we show that the mutant of rice (Oryza sativa L. ssp. indica cv IR8) arm2 is defective in the uptake of the naturally occurring auxin indole-3-butyric acid (IBA). The acropetal and basipetal transport of IBA is reduced in arm2 roots compared with wild type. In contrast, arm2 roots are normal with respect to uptake and transport of indole-3-acetic acid (IAA). Furthermore, arm2 roots are resistant to IBA but respond normally to IAA. The mutant analysis of arm2 indicates the presence of an influx carrier system for IBA in rice roots.  相似文献   

5.
Xin Z  Li PH 《Plant physiology》1993,101(1):277-284
ABA induces chilling tolerance in maize (Zea mays L., cv Black Mexican Sweet) suspension-cultured cells at 28[deg] C when ABA was added to the culture medium at least 6 h prior to chilling (4[deg] C), and this induction can be inhibited by blocking protein synthesis with cycloheximide treatment (Z. Xin, P.H. Li [1992] Plant Physiol 99: 707-711). De novo synthesis of proteins and changes in poly(A+) RNAs were investigated during the ABA induction of chilling tolerance at 28[deg] C as well as during chilling exposure. At 28[deg] C, ABA increased the net synthesis of 11 proteins. Five of these proteins, whose net synthesis was also increased by chilling (4[deg] C), were called group I ABA-induced proteins; the remaining six proteins, whose net synthesis was not altered by chilling, were called group II ABA-induced proteins. Chilling suppressed the net synthesis of three proteins. ABA treatment prior to chilling did not alleviate this suppression. ABA applied at the inception of chilling induced neither chilling tolerance nor accumulation of any of the group II proteins; however, once the group II proteins appeared, they were continually synthesized even in a chilling regimen. ABA induced seven in vitro translation products at 28[deg] C. Three of these products could also be induced by chilling; the remaining four were induced by ABA only at 28[deg] C. These results suggest that ABA-induced alteration of protein synthesis at 28[deg] C is associated with an increased chilling tolerance in maize suspension-cultured cells.  相似文献   

6.
The effect of low irradiance on three rice cultivars (shade tolerant cvs. Swarnaprabha and CO 43 and shade susceptible cv. IR 20) was studied. The large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase with molecular mass of 55 kDa was reduced in cv. IR 20 grown under low irradiance (LI). Native protein profile studied showed, under LI, reduction in the contents of proteins with RF values 0.03, 0.11 and 0.37. Analysis of chloroplast polypeptides revealed an induction of light-harvesting chlorphyll-protein 2 (LHCP2) under shade. The induction was more expressed in cv. CO 43 than in cv. IR 20. Under LI, in vivo labelled protein bands in the molecular range of 26 - 27 kDa were induced. These proteins were highly turned over in the LI-grown plants of cv. CO 43 than in cv. IR 20. A signal for rbcL gene sequences in EcoRI digested lanes was also found. Isozyme analysis of peroxidase showed an induction of a new band with RF 0.43 in cv. IR 20 subjected to LI. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Two plasmids, p13GUS and p13GUS2, were constructed to create a gene trap system containing the promoterless β-glucuronidase (GUS) reporter gene in the T-DNA region. Transformation of these two plasmids into the rice variety Zhonghua 11 (Oryza sativa ssp. japonica cv.), mediated by Agrobacterium tumefaciens, resulted in 942 independent transgenic lines. Histochemical GUS assays revealed that 31 To plants had various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. Hygromycin-resistant (hygr) homozygotes were screened and the copy number of the T-DNA inserts was determined in the GUS-positivs transgenic plants. The flanking sequences of the T-DNA were isolated by inverse-polymerase chain reaction and the insert positions on the rice genome of T-DNA were determined by a basic local alignment search tool in the GUS-positive transgenic plants transformed with plasmid p13GUS. Moreover, calii induced from the seeds of the T1 generation of 911 GUS-negative transgenic lines were subjected to stress and hormone treatments. Histochemical GUS assays were carried out on the calli before and after treatment. The results revealed that calli from 21 lines displayed differential GUS expression after treatment. All of these data demonstrated that this trap system is suitable for identifying rice genes, including those that are sensitive to induction.  相似文献   

9.
Lung scintigraphy using N-isopropyl-p-[123I]iodoamphetamine (IMP) was performed on 26 patients with pulmonary tuberculosis. Early (5 min after injection) and late images (4 h after injection) were obtained with a large-field γ-camera equipped with a digital computer. Lung scintigraphy using [99mTc]MAA (MAA) was also done. Although early IMP images showed the same findings as [99mTc]MAA images, a discrepancy between delayed IMP images and [99mTc]MAA images was seen in some patients. Increment of activities seen in late images was demonstrated in most patients whose chest x-ray findings included exudative inflammatory changes. Uptake and clearance of IMP was considered to be affected by the active phase of pulmonary tuberculosis.  相似文献   

10.
Oryza sativa L. ssp. japonica cv. Zhonghua 8, which is recalcitrant to infection of Agrobacterium tumefaciens (Smith et Townsend) Conn strain EHA105 with ordinary binary vector pCambia 1301, was transformed through Agrobacterium mediated transformation with help of bombardment. The transformation efficiency can be raised greatly. Single copy of gene insertion in the genome of transgenic rice plants was proved by Southern analysis and the expression of GUS gene was observed. GUS gene and hygromycin-resistant gene show 3∶1 segregation in progenies of the transgenic rice plants.  相似文献   

11.
与对低温不敏感的粳稻台北309和武育粳相比,对低温敏感的籼稻IR64、CA212和Pusa经光照条件下8℃处理后最大光合速率(Pmax)和原初光化学效率(Fv/Fm)下降较多,出现了O2-·、过氧化氢、氧化型谷胱甘肽(GSSG)和氧化型抗坏血酸(DHA)的大量累积,其GSSG和DHA的含量分别与叶绿素含量的下降呈极显著负相关,表明光照条件下低温胁迫下,还原态的谷胱甘肽(GSH)和抗坏血酸的再生受阻,不能有效地清除活性氧,导致其叶绿素含量降低和光合能力受抑,而汕优63的变化位于上述两种类型之间。其中AsA/DHA和GSH/GSSG的变化与叶绿素含量的变化呈极显著正相关。  相似文献   

12.
Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isolated from cv IR36, a lowland rice variety. Expression was induced upon short- and long-term submergence in cv IR36 and in cv Plai Ngam, a Thai deepwater rice variety. Under hypoxic conditions, abscisic acid and gibberellin had a reciprocal opposite effect on the activity of OS-ACS5. Gibberellin up-regulated and abscisic acid down-regulated OS-ACS5 mRNA accumulation. Growth experiments indicated that lowland rice responded to submergence with a burst of growth early on, but lacked the ability to sustain elongation growth. Sustained growth, characteristic for deepwater rice, was correlated with a prolonged induction of OS-ACS5. In addition, a more pronounced capacity to convert ACC to ethylene, a limited ACC conjugation, and a high level of endogenous gibberellin(20) were characteristic for the deepwater variety. An elevated level of OS-ACS5 messenger was found in cv IR36 plants treated with exogenous ACC. This observation was concomitant with an increase in the capacity of converting ACC to ethylene and in elongation growth, and resulted in prolonged survival. In conclusion, OS-ACS5 is involved in the rapid elongation growth of deepwater rice by contributing to the initial and long-term increase in ethylene levels. Our data also suggest that ACC limits survival of submerged lowland rice seedlings.  相似文献   

13.
Responses of antioxidative defense systems to chilling and drought stresses were comparatively studied in four cultivars of rice (Oryza sativa L.) differing in sensitivity, two of them (Xiangnuo no. 1 and Zimanuo) are tolerant to chilling but sensitive to drought and the other two (Xiangzhongxian no. 2 and IR50) are tolerant to drought but sensitive to chilling. The seedlings of rice were transferred into growth chamber for 5 d at 8 degrees C as chilling treatment, or at 28 degrees C as control, or at 28 degrees C but cultured in 23% PEG-6000 solution as drought stress treatment. Under drought stress the elevated levels of electrolyte leakage, contents of H(2)O(2) and total thiobarbituric acid-reacting substances (TBARS) in Xiangzhongxian no. 2 and IR50 are lower than those in Xiangnuo no. 1 and Zimanuo. On the contrary, Xiangnuo no. 1 and Zimanuo have much lower level of electrolyte leakage, H(2)O(2) and TBARS than Xiangzhongxian no. 2 and IR50 under chilling stress. Activities of antioxidant enzymes (superoxide dismutase (SOD), catalase, and ascorbate-peroxidase (APX)) and contents of antioxidants (ascorbaic acid and reduced glutathione) were measured during the stress treatments. All of them were enhanced greatly until 3 d after drought stress in the two drought-tolerant cultivars, or after chilling stress in the two chilling-tolerant cultivars. They all were decreased at 5 d after stress treatments. On the other hand, activities of antioxidant enzymes and contents of antioxidants were decreased greatly in the drought-sensitive cultivars after drought stress, or in the chilling-sensitive cultivars after chilling stress. The results indicated that tolerance to drought or chilling in rice is well associated with the enhanced capacity of antioxidative system under drought or chilling condition, and that the sensitivity of rice to drought or chilling is linear correlated to the decreased capacity of antioxidative system.  相似文献   

14.
Net CO2 output by CAM plants in the light: the role of leaf conductance   总被引:4,自引:0,他引:4  
Triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-l-(l,2,4-triazol-l-yl)-2-butanone] is a triazoie fungicide which protects bean ( Phaseolus vulgaris L. cv. Spring Green) plants from heat and chilling injury. When the plants were exposed to heat shock by dipping the shoots in hot (50°C) distilled water for 2 min or exposing the plants to cold (1°C) for 8 h the primary leaves showed visual symptoms of injury 2 days after treatment and thereafter there was a progressive decline in chlorophyll and an increase in electrolyte leakage indicative of a loss of membrane integrity. There was a loss of metabolic (respiratory) activity in the root meristems when the roots were dipped in hot (48°C) water. All these symptoms of heat and chilling injury in the controls were either delayed or prevented by root application of triadimefon.  相似文献   

15.
The commercially important Indica rice cultivar Oryza sativa cv. IR72 has been transformed using direct gene transfer to protoplasts. PEG-mediated transformation was done with two plasmid constructs containing either a CaMV 35S promoter/HPH chimaeric gene conferring resistance to hygromycin (Hg) or a CaMV 35S promoter/BAR chimaeric gene conferring resistance to a commercial herbicide (Basta) containing phosphinothricin (PPT). We have obtained so far 92 Hgr and 170 PPTr IR72 plants from protoplasts through selection. 31 Hgr and 70 PPTr plants are being grown in the greenhouse to maturity. Data from Southern analysis and enzyme assays proved that the transgene was stably integrated into the host genome and expressed. Transgenic plants showed complete resistance to high doses of the commercial formulations of PPT.  相似文献   

16.
17.
The plant hormone abscisic acid (ABA) mediates many vital processes in plant growth and development, including seed dormancy, cell division, water use efficiency, and adaptation to drought, salinity, chilling, pathogen attack, and UV light. Our understanding of ABA signal transduction is fragmentary and would benefit from specific and facile probes of the process. Protoplasts from rice (Oryza sativa L. cv IR54) embryonic suspension cultures cotransformed with effector plasmids encoding the maize (Zea mays) VIVIPAROUS1 cDNA and/or the Arabidopsis dominant negative mutant (abi1-1) ABA-insensitive cDNA demonstrated genetic interactions of VIVIPAROUS1 and abi1-1 in transactivation of the ABA-inducible HVA1 promoter from barley (Hordeum vulgare), suggesting the mechanisms of these effectors are conserved among monocots and dicots. Trivalent ions have been shown to act as an effector of gene expression in plants and animals, although the mechanism of action is unknown. We show in two complementary transient ABA-inducible gene expression assays (beta-glucuronidase and luciferase enzymatic activities and quantitative flow cytometry of green fluorescent protein) that trivalent ions specifically interact with an ABI1-dependent ABA-signaling pathway leading to gene expression. Trivalent ions mimic ABA effects on gene expression and may be a useful tool to study ABA signaling.  相似文献   

18.
19.
The potential role of photorespiration in the protection against salt stress was examined with transgenic rice plants. Oryza sativa L. cv. Kinuhikari was transformed with a chloroplastic glutamine synthetase (GS2) gene from rice. Each transgenic rice plant line showed a different accumulation level of GS2. A transgenic plant line, G39-2, which accumulated about 1.5-fold more GS2 than the control plant, had an increased photorespiration capacity. In another line, G241-12, GS2 was almost lost and photorespiration activity could not be detected. Fluorescence quenching analysis revealed that photorespiration could prevent the over-reduction of electron transport systems. When exposed to 150 mM NaCl for 2 weeks, the control rice plants completely lost photosystem II activity, but G39-2 plants retained more than 90% activity after the 2-week treatment, whereas G241-12 plants lost these activities within one week. In the presence of isonicotinic acid hydrazide, an inhibitor of photorespiration, G39-2 showed the same salt tolerance as the control plants. The intracellular contents of NH4 + and Na+ in the stressed plants correlated well with the levels of GS2. Thus, the enhancement of photorespiration conferred resistance to salt in rice plants. Preliminary results suggest chilling tolerance in the transformant.  相似文献   

20.
Salt affected soil inhibits plant growth, development and productivity, especially in case of rice crop. Ion homeostasis is a candidate defense mechanism in the salt tolerant plants or halophyte species, where the salt toxic ions are stored in the vacuoles. The aim of this investigation was to determine the OsNHX1 (a vacuolar Na+/H+ exchanger) and OsHKT2;1 (Na+/K+ transporter) regulation by salt stress (200 mM NaCl) in two rice cultivars, i.e. Pokkali (salt tolerant) and IR29 (salt susceptible), the accumulation of Na+ in the root and leaf tissues using CoroNa Green® staining dye and the associated physiological changes in test plants. Na+ content was largely increased in the root tissues of rice seedlings cv. Pokkali (15 min after salt stress) due to the higher expression of OsHKT2;1 gene (by 2.5 folds) in the root tissues. The expression of OsNHX1 gene in the leaf tissues was evidently increased in salt stressed seedlings of Pokkali, whereas it was unchanged in salt stressed seedlings of IR29. Na+ in the root tissues of both Pokkali and IR29 was enriched, when subjected to 200 mM NaCl for 12 h and easily detected in the leaf tissues of salt stressed plants exposed for 24 h, especially in cv. Pokkali. Moreover, the overexpression of OsNHX1 gene regulated the translocation of Na+ from root to leaf tissues, and compartmentation of Na+ into vacuoles, thereby maintaining the photosynthetic abilities in cv. Pokkali. Overall growth performance, maximum quantum yield (Fv/Fm), photon yield of PSII (ΦPSII) and net photosynthetic rate (Pn) was improved in salt stressed leaves of Pokkali than those in salt stressed IR29.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号