首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In species with large geographic ranges, genetic diversity of different populations may be well studied, but differences in loci and sample sizes can make the results of different studies difficult to compare. Yet, such comparisons are important for assessing the status of populations of conservation concern. We propose a simple approach of using a single well-studied reference population as a ‘yardstick'' to calibrate results of different studies to the same scale, enabling comparisons. We use a well-studied large carnivore, the brown bear (Ursus arctos), as a case study to demonstrate the approach. As a reference population, we genotyped 513 brown bears from Slovenia using 20 polymorphic microsatellite loci. We used this data set to calibrate and compare heterozygosity and allelic richness for 30 brown bear populations from 10 different studies across the global distribution of the species. The simplicity of the reference population approach makes it useful for other species, enabling comparisons of genetic diversity estimates between previously incompatible studies and improving our understanding of how genetic diversity is distributed throughout a species range.  相似文献   

2.
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.  相似文献   

3.
We present a spatially explicit population model for analysing the expansion of brown bears (Ursus arctos) after the reintroduction program in central Austria. The model is based on field investigations into brown bears in Austria and Slovenia and on current knowledge of brown bears. The landscape of the eastern Alps is represented by a GIS-derived raster map defining local habitat suitability and five major spatial barriers to dispersal. The population model follows the fate of individual bears and simulates reproduction, dispersal, home range establishment, and mortality in annual time steps. We indirectly adjust unknown or uncertain model parameters with 10-year data on the number of females with cubs in central Austria and determine key variables of population dynamics, such as population sizes and growth rates within different population nuclei, dispersal distances, or mortality rates, for model parameterisations that reproduce the data on females with cubs. We estimated a current (1996–2000) growth rate of the population in Austria and adjacent parts of Italy of some 14%; a high proportion of this growth was due toimmigration from Slovenia. Consequently, the growth rate of the subpopulation in central Austria, which probably is isolated functionally (i.e., no exchange of females) from the nuclei along the Austrian–Slovenian border, yielded some 7%. This subpopulation may comprise seven residents, and we estimated for females a 33% risk of extinction during the 1992–2000 period. Validation and confirmation of our model results with data on bear densities that were not used for model construction and parameterisation supported our findings. The high female mortality rates, together with the vulnerability of the small population to chance events (i.e., demographic stochasticity), are the most pressing threat for the population in the eastern Alps. Our approach could be widely applied for analysing dynamics of rare and endangered species in which the paucity of data precludes an appraisal of the state of the population using standard methods.  相似文献   

4.
Conservation and management of large carnivores is often hampered by the lack of information of basic biological parameters. This is particularly true for brown bears (Ursus arctos) in the Former Yugoslav Republic (FYR) of Macedonia. The bear population in this country is important, as it links bear populations of the central part of the Dinaric–Pindos population and the endangered population to the south in Greece. The aim of this study was to assess bear presence in FYR Macedonia and to provide the first evaluation of the genetic status of the species in this country. Bear presence was assessed through a questionnaire and sign surveys, while the genetic status of the species was evaluated through noninvasive genetic sampling from power poles and microsatellite analysis. The results of the study indicate the continuous and permanent presence of brown bears in FYR Macedonia from the border to Kosovo in the northwest, along the border to Albania and Greece in the south; bear presence around Mount Ko?uf in the south of the country was seasonal. High levels of genetic diversity were recorded, and it appears that this bear population is currently not threatened by low genetic variability. Cross-border movements of bears between FYR Macedonia and Greece were documented, indicating the presence of an interconnected population and outlining the necessity for a coordinated international approach in the monitoring and conservation of the species in southeastern Europe.  相似文献   

5.
Accurate population size estimates are important information for sustainable wildlife management. The Romanian Carpathians harbor the largest brown bear (Ursus arctos) population in Europe, yet current management relies on estimates of density that lack statistical oversight and ignore uncertainty deriving from track surveys. In this study, we investigate an alternative approach to estimate brown bear density using sign surveys along transects within a novel integration of occupancy models and home range methods. We performed repeated surveys along 2‐km segments of forest roads during three distinct seasons: spring 2011, fall‐winter 2011, and spring 2012, within three game management units and a Natura 2000 site. We estimated bears abundances along transects using the number of unique tracks observed per survey occasion via N‐mixture hierarchical models, which account for imperfect detection. To obtain brown bear densities, we combined these abundances with the effective sampling area of the transects, that is, estimated as a function of the median (± bootstrapped SE) of the core home range (5.58 ± 1.08 km2) based on telemetry data from 17 bears tracked for 1‐month periods overlapping our surveys windows. Our analyses yielded average brown bear densities (and 95% confidence intervals) for the three seasons of: 11.5 (7.8–15.3), 11.3 (7.4–15.2), and 12.4 (8.6–16.3) individuals/100 km2. Across game management units, mean densities ranged between 7.5 and 14.8 individuals/100 km2. Our method incorporates multiple sources of uncertainty (e.g., effective sampling area, imperfect detection) to estimate brown bear density, but the inference fundamentally relies on unmarked individuals only. While useful as a temporary approach to monitor brown bears, we urge implementing DNA capture–recapture methods regionally to inform brown bear management and recommend increasing resources for GPS collars to improve estimates of effective sampling area.  相似文献   

6.
The interaction between brown bears (Ursus arctos) and Pacific salmon (Oncorhynchus spp.) is important to the population dynamics of both species and a celebrated example of consumer‐mediated nutrient transport. Yet, much of the site‐specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio‐telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012–2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, O. nerka, in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed‐capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6‐week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales.  相似文献   

7.
The formerly large, continuous brown bear population of the Carpathians has experienced a radical decrease in population size due to human activities which have resulted in splitting the population into the larger Eastern Carpathian and the smaller Western Carpathian subpopulations. In the Western Carpathians, brown bears came close to extinction at the beginning of 1930s, but thanks to both conservation and management efforts the bear population has begun to recover. In contrast, the Eastern Carpathian subpopulation in Romania has never dropped below 800 individuals, potentially preserving the original amount of genetic variation. In this paper we present results of a genetic study of brown bear subpopulations distributed in the Slovak and Romanian sections of the Carpathians using 13 nuclear microsatellites. The documented level of genetic differentiation between the Western and Eastern Carpathian subpopulations reflects the isolation which lasted almost 100 years. Furthermore, the existence of two, different, genetic clusters within the Western Carpathians despite close geographic proximity indicates that human-caused fragmentation and isolation have resulted in significant genetic divergence. Although the subpopulations display an indication of genetic bottleneck, the level of genetic diversity is within the range commonly observed in different brown bear populations. The results presented here point out the significance of human exploitation to the population structure of this large carnivore species. Future management efforts should be aimed at securing and restoring the connectivity of forested habitats, in order to preserve the genetic variation of the Carpathian brown bear subpopulations and to support the gene flow between them.  相似文献   

8.
Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction.  相似文献   

9.
The small population of brown bears in central Austria originated from a single migrant bear that had settled in the area in 1972 and three bears that were released in the years 1989–1993. Subsequently, the population has been monitored by radio-tracking and collecting data on bear signs and observations. In 2000 we started a genetic monitoring program of the population with the aim to obtain data on population size, sex ratio, relationships as well as movements of individuals. We present results from six years of genetic monitoring, which were combined with field observations. During this time 1,005 hair and faecal samples were gathered in an area of >3,000 km2, most of them in the core area of <1,000 km2. Furthermore we analysed blood samples from captured individuals. Eight microsatellite and two sex determination loci were employed for DNA profiling. The number of detected individuals is surprisingly low, ranging from 5–8 per year. Concerning relationships the analysis reveals that all genotyped individuals are descendants of the founder individuals indicating that no immigration took place. Only one male and three females (mother and 2 daughters) took part in reproduction. Considering the fact that 28 bears were born in this region since 1991 the question arises where the bears disappear to. Our results suggest that subadult bears migrate from the core area. However, indices of bear occurrence outside the core area are rare and migration could be proved only for two young males. Other explanations, such as increased natural mortality and illegal hunting are discussed.  相似文献   

10.
Reliable population and density estimates are the cornerstone of effective conservation and management planning, as conservation priorities often arise in relation to population numbers. Despite increased public interest and costly conservation programs limited information on brown bear (Ursus arctos, Linnaeus, 1758) abundance and density in Greece exists. We carried out systematic non-invasive genetic sampling using hair traps on power poles, as part of a capture-mark-recapture study design in order to rigorously estimate abundance and density of the Pindos bear population in Greece. From 2007–2010 we identified 211 and estimated a mean of 182.3 individuals in four sampling areas; bear densities ranged from 10.0 to 54 bears/1000 km2. These results indicate an important population recovery of this large carnivore in Greece in recent years; a conservative population estimate would place the population size in the entire country >450 individuals. Considering the results of the study and the increased negative interactions between humans and bears recorded currently in Greece, we suggest that systematic genetic monitoring using power poles should continue in order to collect the necessary information that will enable the definition of an effective Action Plan for the long-term conservation of this species.  相似文献   

11.
Human-caused mortality in general, and unregulated hunting in particular, have been implicated in reductions in brown bear (Ursus arctos) populations throughout much of their range. In northwestern Alaska, USA, bear densities have not been assessed in 20 years while harvest regulations have been liberalized, raising concerns that broad undetected population declines might occur. We used a modified mark-resight approach to estimate brown bear density during 2005–2018 in 4 subareas throughout the region. We also summarized harvest information for each subarea and used our survey results to estimate harvest rates. We estimated densities for independent bears assuming constant or heterogeneous probabilities of detection and occurrence. We present the results of the constant model for more direct comparison with past work and the heterogeneity model results to provide estimates of density that are less likely to be negatively biased. Using the constant model, we estimated the density of independent bears was 17.0, 49.2, 24.9, and 19.4/1,000 km2 on portions of the Seward Peninsula, the lower Noatak River, the upper Noatak River, and Gates of the Arctic National Park and Preserve, respectively. These estimates are broadly similar to those from past work in interior and northwestern Alaska, with the exception of the lower Noatak River subarea where our estimates are the highest reported for a bear population in northern Alaska. We estimated that the harvest rate on the Seward Peninsula was approximately 5.2% or 7.7% on average, depending upon the model used. In the remaining areas, we estimated annual harvest rates were <2.5%, well within sustainability guidelines from past work. Overall, our results suggest that brown bear densities are similar or somewhat higher than in the past in much of northwestern Alaska and that current harvest rates are sustainable in most areas, except perhaps the Seward Peninsula. Ongoing survey work will be useful for further evaluating the assumptions of the modified mark-resight survey approach, assessing population trajectory, and determining the effect of harvest on brown bear populations. © 2021 The Wildlife Society.  相似文献   

12.
Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears (Ursus arctos), using three common data types for bear (U. spp.) populations: repeated counts, capture–mark–recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations’ management and can be readily adapted to other large carnivores.  相似文献   

13.
Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.  相似文献   

14.
Molecular studies highlighted a strong genetic affinity between the remnant and isolated population of the Apennine brown bear and other southern European populations. Despite this genetic closeness a recent morphometric study revealed a marked phenotypic distinctiveness of the Apennine population, supporting the reinstatement of a distinct taxon (Ursus arctos marsicanus). By building upon previous morphological analyses, we adopted geometric morphometrics to better investigate the skull morphology of the Apennine brown bear with reference to the other, closely related southern European populations. Both skull shape and size differences confirmed the strong divergence of U. arctos marsicanus. In particular, the Apennine bears are characterized by an enlargement of the supraorbital apophysis and a larger distance across the zygomatic arches. Furthermore, our analyses highlighted significant shape differences of the first upper molar in the Apennine bears. Our results suggest that the Apennine bears underwent a rapid morphological change, possibly driven by genetic drift and local selective pressures. Because the greatest morphological differentiation is likely to be related to the muscles involved in mastication, we hypothesize that local selective pressures might be related to a shift in food habits, with highly reduced depredation and feeding on large carcasses in favour of vegetation and hard mast (beech nuts and acorns). These results suggest an adaptive distinctiveness of the Apennine bears, which should be carefully considered in any management and conservation action addressed to this highly endangered population. Although more in‐depth molecular studies are required to better assess the taxonomic and genetic status of the Apennine brown bear population, our study emphasizes the importance of morphological analyses as a complementary tool for a more thorough characterization of variation and divergence in endangered taxa. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

15.
ABSTRACT Noninvasive genetic sampling has become a popular method for obtaining population parameter estimates for black (Ursus americanus) and brown (U. arctos) bears. These estimates allow wildlife managers to develop appropriate management strategies for populations of concern. Black bear populations at Great Dismal Swamp (GDSNWR), Pocosin Lakes (PLNWR), and Alligator River (ARNWR) National Wildlife Refuges in coastal Virginia and North Carolina, USA, were perceived by refuge biologists to be at or above cultural and perhaps biological carrying capacity, but managers had no reliable abundance estimates upon which to base population management. We derived density estimates from 3,150 hair samples collected noninvasively at each of the 3 refuges, using 6–7 microsatellite markers to obtain multilocus genotypes for individual bears. We used Program MARK to calculate population estimates from capture histories at each refuge. We estimated densities using both traditional buffer strip methods and Program DENSITY. Estimated densities were some of the highest reported in the literature and ranged from 0.46 bears/km2 at GDSNWR to 1.30 bears/km2 at PLNWR. Sex ratios were male-biased at all refuges. Our estimates can be directly utilized by biologists to develop effective strategies for managing and maintaining bears at these refuges, and noninvasive methods may also be effective for monitoring bear populations over the long term.  相似文献   

16.
  • 1 We review the genetics research that has been conducted on the European brown bear Ursus arctos, one of the genetically best‐studied mammalian species.
  • 2 The first genetics studies on European brown bears were on phylogeography, as a basis for proposed population augmentations. Two major mitochondrial DNA lineages, western and eastern, and two clades within the western lineage were found. This led to a hypothesis that brown bears had contracted to southern refugia during the last glacial maximum. More recent results suggest that gene flow among brown bears blurred this structure and they survived north of these putative refugia. Thus, today's structure might be a result of population fragmentation caused by humans.
  • 3 The nuclear diversity of European brown bears is similar in range to that in North American bears: low levels occur in the small populations and high levels in the large populations.
  • 4 Many non‐invasive genetic methods, developed during research on brown bears, have been used for individual identification, censusing populations, monitoring migration and gene flow, and testing methods that are easier to use in endangered populations and over large areas.
  • 5 Genetics has been used to study many behavioural and population ecological questions that have relevance for the conservation and management of brown bears.
  • 6 The European brown bear has served, and will continue to serve, as a model for the development of methods, analyses and hypotheses in conservation genetics.
  相似文献   

17.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

18.
19.
Genetic monitoring has rarely been used for wildlife translocations despite the potential benefits this approach offers, compared to traditional field‐based methods. We applied genetic monitoring to the reintroduced brown bear population in northern Italy. From 2002 to 2008, 2781 hair and faecal samples collected noninvasively plus 12 samples obtained from captured or dead bears were used to follow the demographic and geographical expansion and changes in genetic composition. Individual genotypes were used to reconstruct the wild pedigree and revealed that the population increased rapidly, from nine founders to >27 individuals in 2008 (λ = 1.17–1.19). Spatial mapping of bear samples indicated that most bears were distributed in the region surrounding the translocation site; however, individual bears were found up to 163 km away. Genetic diversity in the population was high, with expected heterozygosity of 0.74–0.79 and allelic richness of 4.55–5.41. However, multi‐year genetic monitoring data showed that mortality rates were elevated, immigration did not occur, one dominant male sired all cubs born from 2002 to 2005, genetic diversity declined, relatedness increased, inbreeding occurred, and the effective population size was extremely small (Ne = 3.03, ecological method). The comprehensive information collected through genetic monitoring is critical for implementing future conservation plans for the brown bear population in the Italian Alps. This study provides a model for other reintroduction programmes by demonstrating how genetic monitoring can be implemented to uncover aspects of the demography, ecology and genetics of small and reintroduced populations that will advance our understanding of the processes influencing their viability, evolution, and successful restoration.  相似文献   

20.
Brown bears have lost most of their range on the European continent. The remaining western populations are small, isolated and highly endangered. The Dinaric-Pindos brown bear population is the western-most stable population and the fourth largest in Europe. It has been recognized as a potential source for recolonization of populations whose survival is at risk. Indeed, several translocations of Dinaric bears to Italy, Austria and France have recently been made. Despite the importance of the Dinaric bear population, its genetic status remains poorly understood. Using tissue samples from 156 hunted or accidentally killed Dinaric bears in Croatia, this study analysed genetic diversity at 12 microsatellite loci, as well as population structure and past reductions in size. In addition, a subset of 59 samples was used to assess diversity of the mitochondrial DNA control region. The results indicate that Dinaric bears have high nuclear genetic diversity, as compared to other extant brown bear populations, despite genetic evidence of a bottleneck caused by past persecutions. However, haplotype diversity was low, probably as a result of male-biased dispersal and female philopatry. Not surprisingly, no evidence of population sub-structure was found using nuclear markers, as the bear habitat has remained continuous and the highway network has been built only recently. Management should focus on maintaining habitat connectivity and keeping the effective population size as large as possible. In addition, when removing individuals, care should be taken not to further deplete the population of rare haplotypes. A coordinated transboundary management of the entire Dinaric-Pindos brown bear population should be a priority for its long-term conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号