首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Density functional theory (DFT) calculations at B3LYP/6-31 G (d,p) and B3LYP/6-311?+?G(d,p) levels for the substituted pyridine-catalyzed isomerization of monomethyl maleate revealed that isomerization proceeds via four steps, with the rate-limiting step being proton transfer from the substituted pyridinium ion to the C=C double bond in INT1. In addition, it was found that the isomerization rate (maleate to fumarate) is solvent dependent. Polar solvents, such as water, tend to accelerate the isomerization rate, whereas apolar solvents, such as chloroform, act to slow down the reaction. A linear correlation was obtained between the isomerization activation energy and the dielectric constant of the solvent. Furthermore, linearity was achieved when the activation energy was plotted against the pK a value of the catalyst. Substituted-pyridine derivatives with high pK a values were able to catalyze isomerization more efficiently than those with low pK a values. The calculated relative rates for prodrugs 16 were: 1 (406.7), 2 (7.6?×?106), 3 (1.0), 4 (20.7), 5 (13.5) and 6 (2.2?×?103). This result indicates that isomerizations of prodrugs 1 and 35 are expected to be slow and that of prodrugs 2 and 6 are expected to be relatively fast. Hence, prodrugs 2 and 35 have the potential to be utilized as prodrugs for the slow release of monomethylfumarate in the treatment of psoriasis and multiple sclerosis.
Figure
Substituted pyridine-catalyzed isomerization of monomethylmaleate (prodrug, cis-isomer) to monomethylfumerate (parental drug, trans-isomer)  相似文献   

3.
Synthetic and theoretical studies were performed to gain insight into the regioselectivity in the mechanism of aspartyl-isoaspartyl formation, modeled by additions of ammonia and primary amines to methyl maleamate. Reactions between maleamate and aliphatic, araliphatic amines or O-methyl acetimidate lead to the formation of N-substituted isoasparaginates. The size of the amine and the activating effect of the amide and ester group on the double bond are the determining factors of the site of addition. The formation of both isomers was observed only in the case of ammonia addition. The regioselectivity was predicted on the basis of the charge distribution for low-energy methyl maleamate conformers, calculated at the B3LYP/6-311++G(2df,2pd)//B3LYP/6-31+G(d) level, both in gas phase and in methanol. The methyl isoasparaginate over methyl asparaginate product ratio was computed based on the free energy Boltzmann distribution of their conformers. The calculated 2 : 1 ratio is in agreement with the experimental regioselectivity of the addition of nitrogen nucleophiles.
Figure
Regioselective formation of asparaginates  相似文献   

4.
A random walk on the PES for (MeSH)4 clusters produced 50 structural isomers held together by hydrogen-bonding networks according to calculations performed at the B3LYP/6–311++G** and MP2/6–311++G** levels. The geometric motifs observed are somewhat similar to those encountered for the methanol tetramer, but the interactions responsible for cluster stabilization are quite different in origin. Cluster stabilization is not related to the number of hydrogen bonds. Two distinct, well-defined types of hydrogen bonds scattered over a wide range of distances are predicted.
Figure
Two distinct types of hydrogen bonds are predicted for the Methanethiol tetramers  相似文献   

5.
The geometries, energies, and electronic properties of the two possible configurations of bis-[dibenzo[a.i]fluorenylidene] were investigated theoretically by density functional theory DFT B3LYP at the UB3LYP/6-311?+?G(2d,p) // UB3LYP/6-31?+?G(d,p) level of theory. According to the performed calculations, it was found that the singlet is 3.4?kcal?mol-1 lower in energy compared to triplet state at room temperature. This gap is compared with those of other alkenes like ethylene, (61.9?kcal?mol-1) tetra-tert-butyethylene, (6.4?kcal?mol-1) and bis-fluorenylidene (19.5?kcal?mol-1). These results confirm the experimental findings of the paramagnetic properties determined by Franzen and Joschek. The low singlet-triplet gap in the case of bis-[dibenzo[a.i]fluorenylidene] is the result of a steric destabilization of the singlet due to strain and stabilization of the triplet electronic state by delocalization of each free electron within each aromatic moiety. This correlates with the special electronic structure of the triplet state of this compound, where facial interaction of two hydrogen atoms lying close to the lobes of each p-orbital occupied with a single electron at the distorted double bond in the triplet electronic state.
Figure
a) The singlet form of bis-dibenzo[a.i]fluorenylidene. b) The triplet form of bis-dibenzo[a.i]fluorenylidene. The central dihedral angle around the C=C double bond changes from 53.2° in the singlet electronic structure to 90.0° in the triplet electronic structure. Of great interest is the very low singlet-triplet gap of this electronic system which equals to 3.4 kcal/mol according to calculation by DFT UB3LYP/6-311+G(2d,p) // UB3LYP/6-31+G(d,p) level of theory.  相似文献   

6.
A tree-step computational approach has been applied to determine the lowest-energy conformers of luteolin-4′-O-β-D-glucoside (L4′G). Fifty-seven starting structures of the L4′G have been built, and then by performing with density functional theory (DFT) optimizations and second-order Møller-Plesset (MP2) calculations, the preferred conformations of L4′G are predicted. In order to test the accuracy of the computational approach, a hybrid Monte-Carlo multiple minimum (MCMM)/quantum mechanical (QM) approach is applied to determine the favorable conformers of L4′G. The alternative classification is employed to put similar conformations into the same catalogue according to the dihedral angles among the luteolin rings, glycosidic dihedral angles, and the orientations of hydroxyl and hydroxymethyl groups. The low-energy conformations are located after the optimizations at the HF/6-31G(d) and B3LYP/6-311+G(d) levels. Compared with the hybrid MCMM/QM approach, the tree-step computational approach not only remains accurate but also saves a lot of computing resources.
Figure
Preferred conformations of luteolin-4′-O-β-D-glucoside in gas phase  相似文献   

7.
DFT calculations at B3LYP/6-31G(d,p) for intramolecular proton transfer in Kirby’s enzyme models 17 demonstrated that the reaction rate is dependent on the distance between the two reacting centers, rGM, and the hydrogen bonding angle, α, and the rate of the reaction is linearly correlated with rGM and α. Based on these calculation results three simvastatin prodrugs were designed with the potential to provide simvastatin with higher bioavailability. For example, based on the calculated log EM for the three proposed prodrugs, the interconversion of simvastatin prodrug ProD 3 to simvastatin is predicted to be about 10 times faster than that of either simvastatin prodrug ProD 1 or simvastatin ProD 2. Hence, the rate by which the prodrug releases the statin drug can be determined according to the structural features of the promoiety (Kirby’s enzyme model).
Figure
A representation Scheme showing the interconversion of simvastatin prodrug to simvastatin by a prodrug chemical approach.  相似文献   

8.
Dipole moments (μ), charge distributions, and static electronic first-order hyperpolarizabilities (β μ ) of the two lowest-energy keto tautomers of guanine (7H and 9H) were determined in the gas phase using Hartree–Fock, Møller–Plesset perturbation theory (MP2 and MP4), and DFT (PBE1PBE, B97-1, B3LYP, CAM-B3LYP) methods with Dunning’s correlation-consistent aug-cc-pVDZ and d-aug-cc-pVDZ basis sets. The most stable isomer 7H exhibits a μ value smaller than that of the 9H form by a factor of ca. 3.5. The β μ value of the 9H tautomer is strongly dependent on the computational method employed, as it dramatically influences the β μ (9H)/β μ (7H) ratio, which at the highest correlated MP4/aug-cc-pVDZ level is predicted to be ca. 5. The Coulomb-attenuating hybrid exchange-correlation CAM-B3LYP method is superior to the conventional PBE1PBE, B3LYP, and B97-1 functionals in predicting the β μ values. Differences between the largest diagonal hyperpolarizability components were clarified through hyperpolarizability density analyses. Dipole moment and first-order hyperpolarizability are molecular properties that are potentially useful for distinguishing the 7H from the 9H tautomer.
Figure
Hyperpolarizability density analysis of the most stable guanine tautomer  相似文献   

9.
Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was ?87.6 kJ mol?1. In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CAM1'T1'M2'T2'M3a'M4a'T3a1'M5a1'T4a1'M6a'P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.
Figure
DFT study suggests that NiL4/ZnCl2 (L=PMe3) has higher catalysis than NiL4 in the synthesis of isocoumarin from phthalic anhydrides and alkynes.  相似文献   

10.
A theoretical study of the chemisorption and dissociation pathways of water on the Al13 cluster was performed using the hybrid density functional B3LYP method with the 6-311+G(d, p) basis set. The activation energies, reaction enthalpies, and Gibbs free energy of activation for the reaction were determined. Calculations revealed that the H2O molecule is easily adsorbed onto the Al13 surface, forming adlayers. The dissociation of the first H2O molecule from the bimolecular H2O structure via the Grotthuss mechanism is the most kinetically favorable among the five potential pathways for O–H bond breaking. The elimination of H2 in the reaction of an H2O molecule with a hydrogen atom on the Al cluster via the Eley–Rideal mechanism has a lower activation barrier than the elimination of H2 in the reaction of two adsorbed H atoms or the reaction of OH and H. Following the adsorption and dissociation of H2O, the structure of Al13 is distorted to varying degrees.
Figure
Potential energy surface along the reaction coordinate for steps 5–9, calculated at the B3LYP/6-311+G(d,p) level  相似文献   

11.
Geometric consequences of electron delocalization were studied for all possible adenine tautomers in aqueous solution by means of ab initio methods {PCM(water)//DFT(B3LYP)/6-311+G(d,p)} and compared to those in the gas phase {DFT(B3LYP)/6-311+G(d,p)}. To measure the consequences of any type of resonance conjugation (π-π, n-π, and σ-π), the geometry-based harmonic oscillator model of electron delocalization (HOMED) index, recently extended to the isolated (DFT) and hydrated (PCM//DFT) molecules, was applied to the molecular fragments (imidazole, pyrimidine, 4-aminopyrimidine, and purine) and also to the whole tautomeric system. For individual tautomers, the resonance conjugations and consequently the bond lengths strongly depend on the position of the labile protons. The HOMED indices are larger for tautomers (or their fragments) possessing the labile proton(s) at the N rather than C atom. Solvent interactions with adenine tautomers slightly increase the resonance conjugations. Consequently, they slightly shorten the single bonds and lengthen the double bonds. When going from the gas phase to water solution, the HOMED indices increase (by less than 0.15 units). There is a good relation between the HOMED indices estimated in water solution and those in the gas phase for the neutral and ionized forms of adenine. Subtle effects, being a consequence of intramolecular interactions between the neighboring groups, are so strongly reduced by solvent that the relation between the HOMED indices and the relative energies for the neutral adenine tautomers seems to be better in water solution than in the gas phase.
Figure
The total HOMED indices in water solution correlate well with those in the gas phase for the neutral and charged isomers of adenine  相似文献   

12.
The structure and electronic properties of the complexes formed by the interaction of imidazole and pyrazole with different BeXH(BeX2) (X = H, Me, F, Cl) derivatives have been investigated via B3LYP/6?311+G(3df,2p)//B3LYP/6?31+G(d,p) calculations. The formation of these azole:BeXH(BeX2) complexes is accompanied by a dramatic enhancement of the intrinsic acidity of the azole, as the deprotonated azole is much more stable after the aforementioned interaction. Most importantly, the increase in acidity is so large that the azole:BeXH or azole:BeX2 complexes behave as NH acids, which are stronger than typical oxyacids such as phosphoric acid and oxalic acid. Interestingly, the increase in acidity can be tuned through appropriate selection of the substituents attached to the Be atom, permitting us to modulate the electron-accepting ability of the BeXH or BeX2 molecule.
Figure
The association of pyrazole and imidazole with BeX2 derivatives dramatically enhances the acidity of the azole, so the complex imidazole:BeCl2 becomes a NH acid that is stronger than oxalic acid in the gas phase  相似文献   

13.
This paper presents an ab initio quantum chemical investigation of the geometrical structures and the non-linear optical properties (NLO) of three structural isomers of pyridinium N-phenolate betaine dye. The ground state geometrical parameters and the first-order hyperpolarizabilities were calculated using the Hartree-Fock (HF) as well as the second-order perturbation Møller-Pleset (MP2) method with the 6–31G, 6–31G(d), 6–31G(d,p), 6–31+G(d), 6–31++G(d,p), 6–311+G(d), aug-cc-PVDZ and the recently developed Z3PolX basis sets. Moreover, the first-order hyperpolarizability was calculated at the coupled cluster singles and doubles (CCSD/6–31+G(d)) level of theory. The analysis of the results of calculations for the investigated isomers indicates that there are important differences in their NLO activities. Additionally, it was shown that Z3PolX basis set works reasonable well for betaine dyes.
Figure
The molecules investigated in the present study. (Figure prepared using Mercury 1.5.)  相似文献   

14.
A relative complete study on the mechanisms of the proton transfer reactions of 2-thioxanthine was carried out with density functional theory. The models were designed with monohydrated and dihydrated microsolvent catalyses either with or without the presence of water solvent considered with the polarized continuum model (PCM). A total number of 114 complexes and 67 transition states were found with the B3LYP/6-311+G** calculations. The energies were refined with both B3LYP/aug-cc-pVTZ and PCM-B3LYP/aug-cc-pVTZ methods. The activation energies were reported with respect to the Gibbs free energies obtained in conjunction with the standard statistical thermodynamics. Possible reaction pathways were confirmed with the intrinsic reaction coordinates. Pathways via C8 atom on the imidazole ring, via the bridged C4 and C5 atoms between pyrimidine and imidazole rings and via N, O and S atom on the pyrimidine ring were examined. The results show that the most feasible pathway is the proton transfers within the long range solvent surrounding via the N, O and S atoms in the pyrimidine ring with di-hydrated catalysis: N(7)H?+?2H2O?→?IM89?→?IM90?→?P13?+?2H2O?→?IM91?→?IM92?→?P6?+?2H2O?→?IM71?→?IM72?→?P7?+?2H2O?→?IM107?→?IM108?→?P18?+?2H2O?→?IM111?→?IM112?→?P19?+?2H2O?→?IM113?→?IM114?→?P17?+?2H2O?→?IM105?→?IM106?→?N(9)H?+?2H2O that has the highest energy barrier of 44.0 kJ mol?1 in the transition of IM89 to IM90 via TS54. The small energy barrier is in good agreement with the experimental observation that 2-TX tautomerizes at room temperature in water. In the aqueous phase, the most stable intermediate is found to be IM21 [N(7)H?+?2H2O] and the possible co-existing species are the monohydrated IM1, IM9, IM39 and IM46, and the di-hydrated IM5, IM8, IM13, IM16, IM81, IM89, IM90, IM91 and IM106 complexes that have a relative concentration larger than 10?6 (1 ppm) with respect to IM21.
Figure
Mechanisms of the proton transfer reactions of 2-thioxanthine were investigated with both B3LYP/aug-cc-pVTZ//B3LYP/6-311+G** and PCM-B3LYP/aug-cc-pVTZ//B3LYP/6-311+G**. The models were designed with monohydrated and dihydrated microsolvent either with or without the presence of water solvent. The results show that the most feasible pathway is the reactions within the long range solvent surrounding via the N, O and S atoms in the pyrimidine ring with di-hydrated catalysis: N(7)H?+?2H2O?→?IM90?→?IM91?→?P13?+?2H2O?→?IM92?→?IM93?→?P6?+?2H2O?→?IM72?→?IM73?→?P7?+?2H2O?→?IM109?→?IM110?→?P18?+?2H2O?→?IM113?→?IM114?→?P19?+?2H2O?→?IM115?→?IM116?→?P17?+?2H2O?→?IM107?→?IM108?→?N(9)H?+?2H2O that has the highest barrier of 44.0 kJ mol?1 in the transition of IM90 to IM91 via TS54. The barrier is adequate for a reaction at room temperature that consists well with the experimental observations.  相似文献   

15.
The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3?H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions.  相似文献   

16.
Glutathione is an immensely important antioxidant, particularly in the central nervous system. The scavenging mechanism of glutathione towards the OH radical was studied theoretically, considering its neutral, non-zwitterionic form relevant to acidic media. Gibbs free barrier and released energies involved in hydrogen abstraction from the different sites of glutathione by an OH radical were studied at the B3LYP/6-31G(d,p), B3LYP/AUG-cc-pVDZ, M06/AUG-cc-pVDZ, M06-2X/AUG-cc-pVDZ levels of density functional theory. Solvation in bulk aqueous media was also studied at all these levels of theory employing the polarizable continuum model. Our study shows that a hydroxyl radical can abstract a hydrogen atom easily from glutathione. Thus, glutathione is shown to be an efficient scavenger of OH radicals, which is in agreement with the results of previous studies.
Figure
Hydrogen abstraction (H10) from the most stable conformer of GSH I by a hydroxyl radical  相似文献   

17.
Azinomycin B—a well-known antitumor drug—forms cross-links with DNA through alkylation of purine bases and blocks tumor cell growth. This reaction has been modeled using the ONIOM (B3LYP/6-31?+?g(d):UFF) method to understand the mechanism and sequence selectivity. ONIOM results have been checked for reliability by comparing them with full quantum mechanics calculations for selected paths. Calculations reveal that, among the purine bases, guanine is more reactive and is alkylated by aziridine ring through the C10 position, followed by alkylation of the epoxide ring through the C21 position of Azinomycin B. While the mono alkylation is controlled kinetically, bis-alkylation is controlled thermodynamically. Solvent effects were included using polarized-continuum-model calculations and no significant change from gas phase results was observed.
Figure
Insights into the cross-linking mechanism of azinomycin B with DNA bases from hybrid QM/MM Computations  相似文献   

18.
The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311?+?G(3df,2p)// B3LYP/6-31?+?G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ?mol?1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.
Figure
The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2  相似文献   

19.
The geometry and the electronic structure of tricyclo[4.2.2.22,5]dodeca-1,5-diene (TCDD) molecule were investigated by DFT/B3LYP and /B3PW91 methods using the 6-311G(d,p) and 6-311++G(d,p) basis sets. The double bonds of TCDD molecule are syn-pyramidalized. The structure of π-orbitals and their mutual interactions for TCDD molecule were investigated. Potential energy surface (PES) of the TCDD-Br2 system was studied by B3LYP/6-311++G(d,p) method and the configurations [molecular charge-transfer (CT) complex, transition states (TS1 and TS2), intermediate (INT) and product (P)] corresponding to the stationary points (minima or saddle points) were determined. Initially, a molecular CT-complex forms between Br2 and TCDD. With a barrier of 22.336 kcal mol-1 the CT-complex can be activated to an intermediate (INT) with energy 15.154 kcal mol-1 higher than that of the CT-complex. The intermediate (INT) then transforms easily (barrier 5.442 kcal mol-1) into the final, N-type product. The total bromination is slightly exothermic. Accompanying the breaking of Br-Br bond, C1-Br, C5-Br and C2-C6 bonds are formed, and C1 = C2 and C5 = C6 double bonds transform into single bonds. The direction of the reaction is determined by the direction of intramolecular skeletal rearrangement that is realized by the formation of C2-C6 bond.
Figure
Potential energy profile along the minimal energy pathway for the stepwise mechanisms of the electrophilic transannular addition reaction of bromine to TCDD. The energy values are given in kcal mol-1 at B3LYP/6311++G(d,p) level. Bond lengths are in Å and angles are in degrees  相似文献   

20.
In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H2O), in the presence of a sodium cation (Na+) and in both (H2O + Na+). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal?mol-1), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2–13 kcal?mol-1). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.
Figure
A three-layer ONIOM model for the outside binding of cationic porphyrins and nucleotide pair DNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号