首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity.

Methodology/Principal Findings

We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented.

Conclusions/Significance

The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity''s big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth''s largest ecosystem.  相似文献   

2.
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.  相似文献   

3.
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2. However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high‐resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5‐class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present‐day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification.  相似文献   

4.
Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life‐history stages across the annual life cycle. We used a 20‐year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long‐term capture–mark–recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity.  相似文献   

5.
陆源人类活动对近海生态系统的影响   总被引:7,自引:0,他引:7  
随着海岸带快速城市化和经济发展,人类活动对近海生态系统的影响日益增加。通过对国内外大量相关文献的分析和与国际专家的研讨,分别从海洋资源开发、海岸带城市化和环境变化等几个方面概述了陆源人类活动对近海生态系统的影响。目前陆源人类活动导致近海生态系统出现的主要问题有:海洋生物资源过度捕捞、海岸带富营养化、海洋酸化、珊瑚礁退化、海洋垃圾、以及海岸带矿产开采等高强度开发活动引发的重金属和持久性有机污染物污染等。这些问题会直接导致海洋生物群落结构变化、影响水质、降低海洋生物多样性,最终影响海洋生态系统服务功能,威胁海洋生态系统健康。这些问题的根源多来自陆地,必须将海洋和陆地作为一个有机整体,整合海陆系统相互作用的科学计划,推进海洋资源和近海生态系统的可持续管理。  相似文献   

6.
7.
Anthropogenically induced global climate change is likely to have a major impact on marine ecosystems, affecting both biodiversity and productivity. These changes will, in turn, have a large impact on humankind's interactions with the sea. By examining the effects of past climate changes on the ocean, as well as by determining how shifts in physical parameters of the ocean may affect physiology, biochemistry and community interactions, scientists are beginning to explore the possible effects of global climate change on marine biota.  相似文献   

8.
The protection of key areas for biodiversity at sea is not as widespread as on land and research investment is necessary to identify biodiversity hotspots in the open ocean. Spatially explicit conservation measures such as the creation of representative networks of marine protected areas (MPAs) is a critical step towards the conservation and management of marine ecosystems, as well as to improve public awareness. Conservation efforts in ecologically rich and threatened ecosystems are specially needed. This is particularly urgent for the Mediterranean marine biodiversity, which includes highly mobile marine vertebrates. Here, we studied the at sea distribution of one of the most endangered Mediterranean seabird, the critically endangered Balearic shearwater Puffinus mauretanicus. Present knowledge, from vessel-based surveys, suggests that this species has a coastal distribution over the productive Iberian shelf in relation to the distribution of their main prey, small pelagic fish. We used miniaturised satellite transmitters to determine the key marine areas of the southern population of Balearic shearwaters breeding on Eivissa and spot the spatial connections between breeding and key marine areas. Our tracking study indicates that Balearic shearwaters do not only forage along the Iberian continental shelf but also in more distant marine areas along the North African coast, in particular W of Algeria, but also NE coast of Morocco. Birds recurrently visit these shelf areas at the end of the breeding season. Species distribution modelling identified chlorophyll a as the most important environmental variable in defining those oceanographic features characterizing their key habitats in the western Mediterranean. We identified persistent oceanographic features across time series available in the study area and discuss our results within the current conservation scenario in relation to the ecology of the species.  相似文献   

9.
孙军  薛冰 《生物多样性》2016,24(7):739-222
理解全球气候变化对地球生态系统的影响是全世界广泛关注的问题, 而相比于陆地生态系统, 海洋生态系统对全球气候变化更为敏感。全球气候变化对海洋的影响主要表现在海洋暖化、海洋酸化、大洋环流系统的改变、海平面上升、紫外线辐射增强等方面。浮游植物是海洋生态系统最重要的初级生产者, 同时对海洋碳循环起到举足轻重的作用, 其对全球气候变化的响应主要体现在物种分布、初级生产力、群落演替、生物气候学等方面。具体表现在以下方面: 暖水种的分布范围在扩大, 冷水种分布范围在缩小; 浮游植物全球初级生产力降低; 浮游植物群落会向细胞体积更小的物种占优势的方向转变; 浮游植物水华发生的时间提前、强度增强; 一些有害物种水华的发生频率也会增加; 海洋表层海水的酸化会影响浮游植物特别是钙化类群的生长和群落多样性; 紫外辐射增强对浮游植物的生长起到抑制作用; 厄尔尼诺、拉尼娜、降水量的增加通常抑制浮游植物生长。浮游植物生长和分布的变化会体现在多样性的各个层面上。对于浮游植物在全球变化各种驱动因子下的生理生态学和长周期变动观测等是今后研究的重要方向, 也将为理解全球变化下的浮游植物-多样性-生态系统响应与反馈机制提供基本信息。  相似文献   

10.
Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world''s ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world''s ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.  相似文献   

11.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.  相似文献   

12.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   

13.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

14.
Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two‐thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid‐1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.  相似文献   

15.
The specifics of the international and regional activity in the context of the realization of the Convention on Biological Diversity has been analyzed. The global aims, tasks, and criteria of the working program of the Convention on marine and coastal biodiversity are discussed. The actual direction of the investigations is analyzed; program actions are planned; arrangements essential for conservation of the biodiversity of marine and coastal ecosystems are proposed.  相似文献   

16.
The coastal marine ecosystems of Vietnam are one of the global biodiversity hotspots, but the biodiversity of marine fungi is not well known. To fill this major gap of knowledge, we assessed the genetic diversity (ITS sequence) of 75 fungal strains isolated from 11 surface coastal marine and deeper waters in Nha Trang Bay and Van Phong Bay using a culture-dependent approach and 5 OTUs (Operational Taxonomic Units) of fungi in three representative sampling sites using next-generation sequencing. The results from both approaches shared similar fungal taxonomy to the most abundant phylum (Ascomycota), genera (Candida and Aspergillus) and species (Candida blankii) but were different at less common taxa. Culturable fungal strains in this study belong to 3 phyla, 5 subdivisions, 7 classes, 12 orders, 17 families, 22 genera and at least 40 species, of which 29 species have been identified and several species are likely novel. Among identified species, 12 and 28 are new records in global and Vietnamese marine areas, respectively. The analysis of enzyme activity and the checklist of trophic mode and guild assignment provided valuable additional biological information and suggested the ecological function of planktonic fungi in the marine food web. This is the largest dataset of marine fungal biodiversity on morphology, phylogeny and enzyme activity in the tropical coastal ecosystems of Vietnam and Southeast Asia. Biogeographic aspects, ecological factors and human impact may structure mycoplankton communities in such aquatic habitats.  相似文献   

17.
Costa Rica is recognized as one of the most diverse countries in species and ecosystems, in their terrestrial realm as well as in the marine. Besides this relevance, the country presents a delay on conservation and management of marine and coastal biodiversity, with respect to terrestrial. For 2006, the marine protected surface was 5,208.8 km2, with 331.5 km of coastline, in 20 protected areas. The country has made progress on the conservation priority sites identification for terrestrial and freshwater biodiversity, with few efforts on marine planning. This research presents the analysis and results of the gap identification process, for marine and coastal biodiversity conservation in the protected areas system of Costa Rica. The analysis was built with the spatial information available on the presence and distribution of coastal and marine biodiversity, the establishment of the conservation goals and a threat analysis over the ecological integrity of this biodiversity. The selection of high-priority sites was carried out using spatial optimization techniques and the superposition over the current shape of marine protected areas, in order to identify representation gaps. A total of 19,076 km2 of conservation gaps were indentified, with 1,323 km2 in the Caribbean and 17,753 km2 in the Pacific. Recommendations are aimed at planning and strengthening the marine protected areas system, using the gaps identified as a framework. It is expected that the results of this study would be the scientific base needed for planning and sustainable use of marine biodiversity in the country.  相似文献   

18.
Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade – which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.  相似文献   

19.
The biodiversity sciences represent the disciplines of whole-organism biology, including systematics, ecology, population biology, behaviour and the fields of comparative biology. The biodiversity sciences are critically important to society because it is knowledge of whole-organisms that is essential for managing and conserving the world's species. Because of an acceleration in environmental degradation and global biodiversity loss in recent decades, the need for the biodiversity sciences has never been more urgent. Yet, biodiversity science is not well supported relative to other fields of science, and thus the need for knowledge about organisms and their environment is far outstripping biologists' ability to provide it. National and international capacity for biodiversity science must therefore be increased substantially. Each nation should establish a national biodiversity research programme coordinated across all government agencies. An international biodiversity research programme should also be established, perhaps with an organizational structure that parallels the International Geosphere-Biosphere Programme. Biodiversity scientists must assume a leadership role in educating the public and bringing about policy changes that will enhance our understanding of the world's species and their ecosystems.  相似文献   

20.
The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号