首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

2.
N- and O-linked oligosaccharides on pro-opiomelanocortin both bear the unique terminal sequence SO(4)-4-GalNAcβ1,4GlcNAcβ. We previously demonstrated that protein-specific transfer of GalNAc to N-linked oligosaccharides on glycoprotein substrates is dependent on the presence of both an oligosaccharide acceptor and a peptide recognition motif consisting of a cluster of basic amino acids. We characterized how two β1,4-N-acetylgalactosaminyltransferases, β4GalNAc-T3 and β4GalNAc-T4, require the presence of both the peptide recognition motif and the N-linked oligosaccharide acceptors to transfer GalNAc in β1,4-linkage to GlcNAc in vivo and in vitro. We now show that β4GalNAc-T3 and β4GalNAc-T4 are able to utilize the same peptide motif to selectively add GalNAc to β1,6-linked GlcNAc in core 2 O-linked oligosaccharide structures to form Galβ1,3(GalNAcβ1,4GlcNAcβ1,6)GalNAcαSer/Thr. The β1,4-linked GalNAc can be further modified with 4-linked sulfate by either GalNAc-4-sulfotransferase 1 (GalNAc-4-ST1) (CHST8) or GalNAc-4-ST2 (CHST9) or with α2,6-linked N-acetylneuraminic acid by α2,6-sialyltransferase 1 (ST6Gal1), thus generating a family of unique GalNAcβ1,4GlcNAcβ (LacdiNAc)-containing structures on specific glycoproteins.  相似文献   

3.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

4.
beta-Hexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of beta-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. Heritable deficiency of this enzyme results in various forms of GalNAc-beta(1,4)-[N-acetylneuraminic acid (2,3)]-Gal-beta(1,4)-Glc-ceramide gangliosidosis, including Tay-Sachs disease. We have determined the x-ray crystal structure of a beta-hexosaminidase from Streptomyces plicatus to 2.2 A resolution (Protein Data Bank code ). beta-Hexosaminidases are believed to use a substrate-assisted catalytic mechanism that generates a cyclic oxazolinium ion intermediate. We have solved and refined a complex between the cyclic intermediate analogue N-acetylglucosamine-thiazoline and beta-hexosaminidase from S. plicatus to 2.1 A resolution (Protein Data Bank code ). Difference Fourier analysis revealed the pyranose ring of N-acetylglucosamine-thiazoline bound in the enzyme active site with a conformation close to that of a (4)C(1) chair. A tryptophan-lined hydrophobic pocket envelopes the thiazoline ring, protecting it from solvolysis at the iminium ion carbon. Within this pocket, Tyr(393) and Asp(313) appear important for positioning the 2-acetamido group of the substrate for nucleophilic attack at the anomeric center and for dispersing the positive charge distributed into the oxazolinium ring upon cyclization. This complex provides decisive structural evidence for substrate-assisted catalysis and the formation of a covalent, cyclic intermediate in family 20 beta-hexosaminidases.  相似文献   

5.
Chondroitin sulfate E (CS-E) plays a crucial role in diverse processes ranging from viral infection to neuroregeneration. Its regiospecific sulfation pattern, generated by N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), is the main structural determinant of its biological activity. Inhibitors of GalNAc4S-6ST can serve as powerful tools for understanding physiological functions of CS-E and its potential therapeutic leads for human diseases. A family of new 4-acylamino-β-GalNAc derivatives and 4-azido-β-GalNAc derivatives were synthesized for their potential application as inhibitors of GalNAc4S-6ST. The target compounds were evaluated for their inhibitory activities against GalNAc4S-6ST. The results revealed that 4-pivaloylamino- and 4-azido-β-GalNAc derivatives displayed evident activities against GalNAc4S-6ST with IC50 value ranging from 0.800 to 0.828 mM. They showed higher activities than benzyl D-GalNAc4S that was used as control.  相似文献   

6.
Three new glycopeptides with O-glycosidic and one glycopeptide with N-glycosylaminic carbohydrate-peptide linkages have been isolated after degradation of blood group substances (BGS). Their structure have been determined as O-(α-GalNAc)-Ser(I), O-(GalNAc)-(Pro)-Ser(II), O-(GalNAc 1 → 3 GalNAc)-(Thr-Ala)-Ser(III), N-(β-GlcNAc)-Asn(IV). The isolation of glycopeptide I confirmed α-configuration of O-glycosidic carbohydrate-peptide bonds. The structure of glycopeptide III with two galactosamine residues is in accordance with the data on the presence of hexosamine core of BGS carbohydrate chains.  相似文献   

7.
A gene encoding β-galactosidase from Bacillus circulans which had hydrolysis specificity for the β1-3 linkage was expressed in Escherichia coli. The β-galactosidase was purified from crude cell lysates of E. coli by column chromatographies on Resource Q and Sephacryl S-200 HR. The enzyme released galactose with high selectivity from oligosaccharides which had terminal β1-3 linked galactose residues. However it did not hydrolyse β1-4 linked galactooligosaccharides. Moreover, Galβ1-3GlcNAc, Galβ1-3GalNAc, and their p-nitrophenyl glycosides were regioselectively synthesized in 10–46% yield by the transglycosylation reaction using this enzyme.  相似文献   

8.
We report the molecular cloning and characterization of two novel β-N-acetylhexosaminidases (β-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two β-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with β-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 β-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the β-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-ΔC at a resolution of 1.8 Å; Hex1-ΔC in complex with β-N-acetylglucosamine at 1.6 Å; and Hex1-ΔC in complex with β-N-acetylgalactosamine at 1.9 Å. We made a docking model of Hex1-ΔC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic β-HEX capable of hydrolyzing glycosphingolipids.  相似文献   

9.
The enterohemorrhagic O157 strain of Escherichia coli, which is one of the most well-known bacterial pathogens, has an O-antigen repeating unit structure with the sequence [-2-d-Rha4NAcα1-3-l-Fucα1-4-d-Glcβ1-3-d-GalNAcα1-]. The O-antigen gene cluster of E. coli O157 contains the genes responsible for the assembly of this repeating unit and includes wbdN. In spite of cloning many O-antigen genes, biochemical characterization has been done on very few enzymes involved in O-antigen synthesis. In this work, we expressed the wbdN gene in E. coli BL21, and the His-tagged protein was purified. WbdN activity was characterized using the donor substrate UDP-[(14)C]Glc and the synthetic acceptor substrate GalNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. The enzyme product was isolated by high pressure liquid chromatography, and mass spectrometry showed that one Glc residue was transferred to the acceptor by WbdN. Nuclear magnetic resonance analysis of the product structure indicated that Glc was β1-3 linked to GalNAc. WbdN contains a conserved DxD motif and requires divalent metal ions for full activity. WbdN activity has an optimal pH between 7 and 8 and is highly specific for UDP-Glc as the donor substrate. GalNAcα derivatives lacking the diphosphate group were inactive as substrates, and the enzyme did not transfer Glc to GlcNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. Our results illustrate that WbdN is a specific UDP-Glc:GalNAcα-diphosphate-lipid β1,3-Glc-transferase. The enzyme is a target for the development of inhibitors to block O157-antigen synthesis.  相似文献   

10.
Arabinogalactan proteins are proteoglycans found on the cell surface and in the cell walls of higher plants. The carbohydrate moieties of most arabinogalactan proteins are composed of β-1,3-galactan main chains and β-1,6-galactan side chains, to which other auxiliary sugars are attached. For the present study, an endo-β-1,3-galactanase, designated FvEn3GAL, was first purified and cloned from winter mushroom Flammulina velutipes. The enzyme specifically hydrolyzed β-1,3-galactan, but did not act on β-1,3-glucan, β-1,3:1,4-glucan, xyloglucan, and agarose. It released various β-1,3-galactooligosaccharides together with Gal from β-1,3-galactohexaose in the early phase of the reaction, demonstrating that it acts on β-1,3-galactan in an endo-fashion. Phylogenetic analysis revealed that FvEn3GAL is member of a novel subgroup distinct from known glycoside hydrolases such as endo-β-1,3-glucanase and endo-β-1,3:1,4-glucanase in glycoside hydrolase family 16. Point mutations replacing the putative catalytic Glu residues conserved for enzymes in this family with Asp abolished activity. These results indicate that FvEn3GAL is a highly specific glycoside hydrolase 16 endo-β-1,3-galactanase.  相似文献   

11.
The ureide pathway has recently been identified as the metabolic route of purine catabolism in plants and some bacteria. In this pathway, uric acid, which is a major product of the early stage of purine catabolism, is degraded into glyoxylate and ammonia via stepwise reactions of seven different enzymes. Therefore, the pathway has a possible physiological role in mobilization of purine ring nitrogen for further assimilation. (S)-Ureidoglycine aminohydrolase enzyme converts (S)-ureidoglycine into (S)-ureidoglycolate and ammonia, providing the final substrate to the pathway. Here, we report a structural and functional analysis of this enzyme from Arabidopsis thaliana (AtUGlyAH). The crystal structure of AtUGlyAH in the ligand-free form shows a monomer structure in the bicupin fold of the β-barrel and an octameric functional unit as well as a Mn(2+) ion binding site. The structure of AtUGlyAH in complex with (S)-ureidoglycine revealed that the Mn(2+) ion acts as a molecular anchor to bind (S)-ureidoglycine, and its binding mode dictates the enantioselectivity of the reaction. Further kinetic analysis characterized the functional roles of the active site residues, including the Mn(2+) ion binding site and residues in the vicinity of (S)-ureidoglycine. These analyses provide molecular insights into the structure of the enzyme and its possible catalytic mechanism.  相似文献   

12.
Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.  相似文献   

13.
Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)(8)-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu(167)-His(226)-Glu(283), which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp(61), Trp(204), Phe(231), and Trp(240) as well as polar residues Asn(51), His(127), Tyr(228), and His(235) in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature.  相似文献   

14.
O-repeating unit biosynthesis is the first committed step in lipopolysaccharide (LPS) biosynthesis in a variety of gram-negative bacteria. The wbnH gene was previously proposed to encode a glycosyltransferase involved in O-repeating unit synthesis in Escherichia coli O86:H2 strain. In this work, we provide biochemical evidence to show that wbnH encodes a N-acetylgalactosaminyl transferase (GalNAcT) that catalyzes the transfer of GalNAc from UDP-GalNAc to the GalNAc-pyrophosphate-lipid acceptor. WbnH activity was characterized using a synthetic acceptor substrate GalNAc alpha-PP-O(CH2)11-OPh. The resulting disaccharide product GalNAc-alpha-1,3-GalNAc alpha-PP-O(CH2)11-OPh was analyzed by LC-MS and NMR spectroscopy. Substrate specificity study indicates that pyrophosphate and hydrophobic lipid moiety are structural requirements for WbnH activity. Divalent metal cations are not required for enzyme catalysis, suggesting WbnH belongs to glycosyltransferase GT-B superfamily. Our results complete the characterization of O86 O-unit assembly pathway, and provide the access of chemically defined O-unit substrates for the further investigation of O-antigen biosynthetic mechanism.  相似文献   

15.
β-Xylosidases are hydrolytic enzymes which play an important role in xylan degradation, hydrolyzing xylobiose and xylooligosaccharides to xylose from the non-reducing end. Filamentous fungi are particularly interesting producers of this enzyme from an industrial point of view, due to the fact that they secrete β-xylosidases into the medium. Besides, fungal β-xylosidases are highly advantageous for their elevated activity levels and specificity. Interest in xylanolytic enzymes has been increasing, for their possible application in many biotechnological processes. This fact has driven the isolation, purification and characterization of several β-xylosidases. In this review, the mechanisms of action, substrate specificities, physicochemical characteristics, regulation at molecular level, molecular cloning and classification of filamentous fungal β-xylosidases are described. The potential industrial applications of fungal β-xylosidases will also be presented.  相似文献   

16.
Some properties of the β-N-acetyl-D-hexosaminidase purified from intercellular fluid of tomato leaves after the plant was systematically infected by TMV (tobacco mosaic virus) were studied. When pNP β-D-GlcNAc (p nitrophenyl-N-aeetyl β-D-glucosaminide) or pNP β-D- GalNAc (p-nitrophenyl-N-acetyl-β-D galactosaminide) was used as the substrate, it showed the optical pH between 4. 8--5.0 and optical temperature between 44— 47℃. Studies of thermostabillty indicated that the enzyme had a biphasic denaturation curve. Using pNP-β-D-GIcNAc or pNP-β-D GalNAc as the substrate, the Km value of the enzyme was 0. 36 and 0. 67 mmol/L respectively. N acetyi-D glucosamine and N acetyl-D-galactosamine were competitive inhibitors of the enzyme activities. Ag+ and Hg2+ were sensitive inhibitors and Fe2+ . Fe3+ and Cu2+ were also inhibitors enzyme activities.  相似文献   

17.

Background

The assembly of Ser/Thr-linked O-glycans of mucins with core 2 structures is initiated by polypeptide GalNAc-transferase (ppGalNAc-T), followed by the action of core 1 β3-Gal-transferase (C1GalT) and core 2 β6-GlcNAc-transferase (C2GnT). β4-Gal-transferase (β4GalT) extends core 2 and forms the backbone structure for biologically important epitopes. O-glycan structures are often abnormal in chronic diseases. The goal of this work is to determine if the activity and specificity of these enzymes are directed by the sequences and glycosylation of substrates.

Methods

We studied the specificities of four enzymes that synthesize extended O-glycan core 2 using as acceptor substrates synthetic mucin derived peptides and glycopeptides, substituted with GalNAc or O-glycan core structures 1, 2, 3, 4 and 6.

Results

Specific Thr residues were found to be preferred sites for the addition of GalNAc, and Pro in the + 3 position was found to especially enhance primary glycosylation. An inverse relationship was found between the size of adjacent glycans and the rate of GalNAc addition. All four enzymes could distinguish between substrates having different amino acid sequences and O-glycosylated sites. A short glycopeptide Galβ1–3GalNAcα-TAGV was identified as an efficient C2GnT substrate.

Conclusions

The activities of four enzymes assembling the extended core 2 structure are affected by the amino acid sequence and presence of carbohydrates on nearby residues in acceptor glycopeptides. In particular, the sequences and O-glycosylation patterns direct the addition of the first and second sugar residues by ppGalNAc-T and C1GalT which act in a site directed fashion.

General significance

Knowledge of site directed processing enhances our understanding of the control of O-glycosylation in normal cells and in disease.  相似文献   

18.
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.  相似文献   

19.
Extensin is a glycoprotein that is rich in hydroxyprolines linked to β-L-arabinofuranosides. In this study, we cloned a hypBA2 gene that encodes a novel β-L-arabinobiosidase from Bifidobacterium longum JCM 1217. This enzyme does not have any sequence similarity with other glycoside hydrolase families but has 38-98% identity to hypothetical proteins in Bifidobacterium and Xanthomonas strains. The recombinant enzyme liberated L-arabinofuranose (Araf)-β1,2-Araf disaccharide from carrot extensin, potato lectin, and Araf-β1,2-Araf-β1,2-Araf-β-Hyp (Ara(3)-Hyp) but not Araf-α1,3-Araf-β1,2-Araf-β1,2-Araf-β-Hyp (Ara(4)-Hyp) or Araf-β1,2-Araf-β-Hyp (Ara(2)-Hyp), which indicated that it was specific for unmodified Ara(3)-Hyp substrate. The enzyme also transglycosylated 1-alkanols with retention of the anomeric configuration. This is the first report of an enzyme that hydrolyzes Hyp-linked β-L-arabinofuranosides, which defines a new family of glycoside hydrolases, glycoside hydrolase family 121.  相似文献   

20.
An enzyme stabilization technique which consists of entrapping protein within a polymeric network has been discussed. The high macromolecular concentration levels which lead to formation of the network are produced as a consequence of polarization phenomena which take place within an unstirred ultrafiltration membrane reactor. Increases in enzyme half-life were generally produced in connection with simple and complex deactivation phenomena of widely different natures (thermal, chemical and proteolytic). Experimental tests have been carried out on the following enzymes: β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21), β-d-fructofuranosidase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26), acid phosphatase [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] and β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号