首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two low-molecular-weight RNAs are associated with the 70S RNA complex of Rous sarcoma virus: a previously described 4S RNA and a newly identified 5S RNA. The 4S RNA constitutes 3 to 4% of the 70S RNA complex or the equivalent of 12 to 20 molecules per 70S RNA. It exhibits a number of structural properties characteristic of transfer RNA as revealed by two-dimensional electrophoresis of oligonucleotides obtained from a T1 ribonuclease digest of the 4S RNA species. The 5S RNA is approximately 120 nucleotides in length, constitutes 1% of the 70S RNA complex or the equivalent of 3 to 4 molecules per molecules of 70S RNA, and is identical in nucleotide composition and structure to 5S RNA from uninfected chicken embryo fibroblasts. Melting studies indicate that the 5S RNA is released from the 70S RNA complex at the same temperature required to dissociate 70S RNA into its constituent 35S subunits. In contrast, greater than 80% of the 4S RNA is released from 70S RNA prior to its conversion into subunits. The possible biological significance of these 70S-associated RNAs is discussed.  相似文献   

2.
Isolated HeLa cell nuclei are capable of synthesizing 5S and pre-4S RNA. The labeling of these low molecular weight species has been compared with the labeling of nucleolar RNA and nuclear heterogeneous RNA. The 5S and pre-4S RNA molecules made in vitro were identified by their mobility on SDS acrylamide gels and by the sensitivity of pre-4S RNA to enzymes which cleave it in vitro to 4S RNA. Their mobilities and cleavage properties are similar to the RNA made in vivo. Unlike the nuclear heterogeneous RNA, the synthesis of the two small molecular weight RNAs is resistant to α-amanitin.A large proportion of 4S RNA labeled in vitro appears to be formed de novo. The ratio of the terminal uridine to the internal uridine 3′-monophosphate remains constant with time, even though there is linear incorporation into the pre-4S RNA in the isolated nuclei.Production of the nucleolar RNA and pre-4S RNA has been compared in the presence of various ions. The pre-4S RNA synthesis has a sharper maximum for (NH4)SO4 and MgCl2 than does the synthesis of nucleolar RNA. The in vitro synthesis of pre-4S is more sensitive to ellipticine and pCMB than the production of nucleolar RNA. These differences between the production of pre-4S RNA and nucleolar RNA are discussed with respect to in vitro reinitiation and the possibility that different polymerases are involved in their synthesis.  相似文献   

3.
Association of 4S Ribonucleic Acid with Oncornavirus Ribonucleic Acids   总被引:43,自引:29,他引:14       下载免费PDF全文
Oncornavirus 60 to 70S ribonucleic acids (RNA), such as those from avian myeloblastosis virus, Schmidt-Ruppin virus, or mouse sarcoma-mouse leukemia viruses, isolated by conventional techniques, contain 4S transferlike RNA molecules that are released upon dissociation of the 60 to 70S RNA with heat. The 4S RNA represents 2.5 to 3.0% of the RNA in the 65S aggregate or 4 to 5 molecules per molecule of 35S RNA formed.  相似文献   

4.
本文采用低速匀浆、过筛的方法从植物叶中分离得到了完整、纯净的叶绿体。将叶绿体与提取缓冲液、苯酚混合匀浆抽提叶绿体 RNA。通过聚丙烯酰胺凝胶电泳与文献已发表的已知酵母5S RNA、菠菜叶绿体4.5S RNA 及小麦5S RNA、4.5S RNA 的电泳迁移距离进行比较,发现芹菜叶绿体中小分子 RNA(沉降系数为5S 左右的 RNA)中除含有5S RNA 和4S RNA 外,还含有两种4.5S RNA。而水杉和银杏叶绿体小分子 RNA 中只含有5S RNA 和4S RNA。  相似文献   

5.
The rates of syntheses of 18S and 28S rRNA, 5S RNA, capped mRNA and 4S RNA were determined in isolated cells from pre- and post-gastrular embryos of Xenopus laevis. The rate of rRNA synthesis per nucleolated cell Mas about 0.2 pg/hr, or about 5.5 × 104 molecules/hr at the blastula stage, and this value remained constant in later stages. At the blastula stage, about 30 molecules of 5s RNA, 10 molecules of capped mRNA and 900 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA. These values were all greatly reduced during the gastrula stage, and at the neurula stage, one molecule each of 5S RNA and capped mRNA and 10 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA.  相似文献   

6.
The binding of ribosomal protein S4 to the 16 S RNA does not result in a large shape or conformational change in the 16 S RNA under the conditions of reconstitution. The sedimentation coefficient, frictional coefficient ratio, and effective hydrodynamic radius of the 16 S RNA.protein S4 complex are very similar to those obtained for the 16 S RNA free in solution. Only subtle conformational differences were obtained in the comparison of the complex and free 16 S RNA by circular dichroism. Thus, extensive organization of the 16 S RNA by ribosomal protein S4 is not a step in the process of self-assembly of the 30 S subunit.  相似文献   

7.
Summary The site-specific complex formed between 16S RNA and the 30S ribosomal protein S4 from Escherichia coli has been degraded with pancreatic ribonuclease. We have recovered the nuclease-resistant RNA from this complex; we call it S4aR. S4aR will bind to S4, but it will not bind to the other 30S proteins that can form site-specific complexes with 16S RNA. The data presented here as well as elsewhere (Schaup et al., 1971b) show that S4aR has a mass of about 150000 daltons and that it is made up of several separate RNA fragments, each of which enters the complex with S4. We conclude that S4 interacts with several separate binding sites on the RNA and that these probably contain a great deal of double stranded structure.  相似文献   

8.
The glucocorticoid receptor (GR) from mouse AtT-20 pituitary tumor cells, when transformed using a variety of in vitro protocols, yields a DNA-binding RNA-containing 6 S form. In order to better understand the physiological role of RNA interaction with the transformed GR, we have isolated and purified the putative RNA from AtT-20 cells. [3H]Triamcinolone acetonide-labeled cytosolic GR was transformed, using Sephadex G-25 filtration, to yield the RNA-containing 6 S GR. The transformed 6 S GR was separated on DEAE-cellulose into the 4 S GR (eluting at about 100 mM KCl) while its associated RNA eluted at 0.30-0.45 M KCl. The addition of only these RNA fractions to the 4 S GR can reconstitute 6 S GR as shown on 5-20% sucrose gradients. RNA (0.3-0.45 M KCl fractions) was further purified by hydroxylapatite chromatography, and the bound RNA (eluted at approximately 70 mM PO4(-2)) was then loaded onto preparative 5-20% sucrose gradients to separate RNA on the basis of size (sedimentation rate). A uniform class of RNA sedimenting at 4 S was obtained and then adsorbed to oligo(dT)-cellulose columns. The unbound fraction (poly(A-)) was capable of shifting 4 S GR to 6 S. Using these chromatographic procedures about 90% of the cellular RNA, incapable of reconstituting the 6 S GR from the 4 S form, was eliminated. The 4 S GR was covalently cross-linked with the purified RNA (termed PIVB RNA) using formaldehyde. The resulting cross-linked GR X RNA complexes were shown to sediment at the density of ribonucleoprotein (1.38 g/cm3) in CsCl gradients and at the 6 S position in high salt sucrose gradients. The hydrolysis of PIVB RNA with ribonuclease A prevented the formation of high salt-resistant ribonucleoprotein complexes, indicating that the GR may be in close contact with PIVB RNA. Electrophoresis of the PIVB RNA on 5% agarose-formaldehyde-denaturing gels yielded one major band with a molecular size of approximately 75 bases. It thus appears that an endogenous 4 S RNA (PIVB RNA) of about 25 kDa specifically interacts with the monomeric 4 S GR to yield the 6 S GR.  相似文献   

9.
Low molecular weight RNA species are described in isolated nuclear components and cytoplasm of salivary gland cells of Chironomus tentans. In addition to 4S and 5S RNA and RNA in the 4–5S range previously described, at least three other components in the range below 16S are present. RNA, the molecular weight of which was estimated to 2.3 x 105 and designed 10S RNA, can be observed only in nucleoli; other RNA, the molecular weight of which was estimated to 1.3 x 105 and designed 8S RNA, was detected in the chromosomes, the nuclear sap, and the cytoplasm but not in the nucleoli; and a third type of RNA, the molecular weight of which was estimated to 8.5 x 104 and designed 7S RNA, was present in nucleoli, chromosomes, nuclear sap, and cytoplasm. The substituted benzimidazole, 5,6-dichloro-1 (β-D-ribofuranosyl)benzimidazole (DRB), which gives a differential inhibition of the labeling of heterodisperse, mainly high molecular weight RNA in the chromosomes, does not inhibit the labeling of 8S RNA. The relative amounts of label in 8S RNA and 4–5S RNA (including 4S RNA and 5S RNA) in different isolated chromosomes, are distributed in proportion to the chromosomal DNA contents. The 8S RNA as well as the 7S RNA show a relative accumulation in chromosomes and nuclear sap with prolonged incubation time and are in this respect similar to intranuclear low molecular weight RNA species described by previous workers. Our data suggest, however, that these two types of RNA may differ in an important aspect from the previously described types since they are also present in the cytoplasm.  相似文献   

10.
11.
tRNA''s associated with the 70S RNA of avian myeloblastosis virus.   总被引:1,自引:1,他引:0       下载免费PDF全文
The distribtuion of various amino acid tRNA's in the 4S RNA components of avian myeloblastosis virus (AMV) and in 4S RNA prepared from chicken cmbryo cells, chicken myeloblasts, and chicken livers was determined. This was done by aminoacylating the 4S RNA samples with a mixture of 17 radioactive amino acids and subsequently identifying the tRNA-accepted amino acids on an amino acid analyzer after deacylation. In embryo cells, myeloblasts, and liver, tRNA's accepting all 1m amino acids were demonstrated. "Free" AMV 4S RNA was characterized by very low quantities of glutamate, valine, and tyrosine tRNA's. RNAs accepting all 17 amino acids, with the exception of tyrosine, were shown to be present in the "70S-associated" 4S RNA which dissociates at 60 C. The bulk of the 70S-associated 4S RNA was dissociated at 60 C at low ionic strength with a concomitant conversion of 70S RNA to 35S RNA. The residual associated 4S RNA was dissociated by further heating of the 35S RNA to 80 C; tryptophan tRNA accounted for greater than 90% of the total amino acid accepting activity in this fraction. The results support other studies in suggesting that tryptophan tRNA may serve as a primer for DNA synthesis in AMV, as has been shown in Rous sarcoma virus.  相似文献   

12.
The major and modified base composition of mitochondrial 4 S RNA from rat liver and from Morris hepatomas 5123D and 7777 has been determined for 16 constituents using a chemical tritium-derivative method. The base composition of these mitochondrial 4 S RNA preparations was compared with the base composition of cytoplasmic and bacterial (Escherichia coli B and Bacillus subtilis) 4-S RNAs. The results of these studies are: 1. When compared with cytoplasmic 4 S RNA, the liver and hepatoma mitochondrial 4-S RNAs are characterized by high (A + U)/(G + C) ratios and low overall degrees of base methylation and modification. 2. The mammalian mitochondrial 4-S RNAs are qualitatively even more different from the bacterial 4-S RNAs than from their cytoplasmic counterparts. Thus, several modified constituents found in both cytoplasmic and mitochondrial 4 S RNA are absent from the bacterial 4-S RNAs. 3. Mitochondrial 4S RNA from both hepatomas was found to be under-methylated and undermodified when compared with normal liver mitochondrial 4S RNA. This trend is more pronounced for the rapidly growing hepatoma 7777 (i.e., 17% undermethylation) than for the more slowly growing hepatoma 5123D (i.e., 8% undermethylation). These findings are discussed in relationship to (1) results of other authors on composition of mitochondrial 4 S RNA, (2) special features of structure and biosynthesis of mitochondrial 4 S RNA, (3) the possible evolutionary origin of mitochondria and (4) the possible role played by aberrant mitochondrial 4 S RNA in altered mitochondrial protein synthesis in tumors.  相似文献   

13.
X-ray and neutron scattering, as well as velocity sedimentation, were used to study the shape and dimensions (compactness) of isolated ribosomal (16S and 23S) RNA's and their complexes with ribosomal proteins. The neutron scattering of ribosomal particles in 42% 2H2O where the protein component is contrast-matched, were taken as a standard of comparison characterizing the dimensions and shape of the 16S and 23S RNA in situ. This comparison allowed the following conclusions: (1) The shape of the isolated 16S RNA at a sufficient Mg2+ concentration (e. g., in the reconstruction buffer) is similar to that of the 16S RNA in situ, but its compactness is somewhat less. (2) The 16S RNA in the complex with protein S4 has a shape and compactness similar to those of the isolated 16S RNA. (3) The 16S RNA in the complex with four core proteins, namely S4, S7, S8 and S15, has a shape and compactness similar to those of the isolated 16S RNA. (4). The six ribosomal proteins, S4, S7, S8, S15, S16, and S17, are necessary and sufficient for the 16S RNA to acquire a compactness similar to that in situ.  相似文献   

14.
Axoplasmic Transport of Transfer RNA in the Chick Optic System   总被引:3,自引:3,他引:0  
It has previously been shown that 4S RNA is transported in the optic nerve of the chick, but that no movement of rRNA can be detected. The 4S component behaved as though it were composed mainly of transfer RNA (tRNA), but the possibility remained that it could contain significant amounts of material resulting from RNA degradation. The transport of this 4S component has been examined in more detail to determine its nature. In addition, the transported material was examined to establish whether the transport of tRNA is a general phenomenon or that there are only a limited number of species involved. This was done using the same principles applied in the previous study; i.e., the specific activities of separated 4S RNA species appearing in the optic tectum 4 days after intraocular injection of [3H]uridine were compared with that of 5S RNA, a nontransported species. The separation was accomplished using 2.8-5-10-17% slab polyacrylamide gels, and 18 separate regions of 4S species could be identified. The results show that at least most, if not all 4S RNA species are transported. In a separate series of experiments the 4S RNA was aminoacylated and again separated on slab gels. In this instance, the RNA was labelled with [3H]uridine and the aminoacyl component with [14C]amino acids. Gel profiles of these dual-labelled components showed excellent correspondence between the two labels, demonstrating that 4S RNA species could be aminoacylated and were therefore tRNA species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Unique 4S RNA species from AKR mouse embryo cells hybridize with AKR murine leukemia virus and avian myeloblastosis virus 35S RNAs in vitro. Analyses by reversed-phase column chromatography indicate that the major 4S species that hybridize with the two viral RNAs are probably the same. A 4S RNA species with similar chromatographic properties is a major component of the AKR viral 4S RNA which associates with the viral 70S RNA in vivo.  相似文献   

16.
Functionally active 70S ribosomes containing 4-thiouridine (s4U) in place of uridine were prepared by a formerly described in vivo substitution method. Proteins were crosslinked to RNA by 366 nm photoactivation of s4U. We observe the systematic and characteristic formation of 30S dimers; they were eliminated for analysis of RNA-protein crosslinks. M13 probes containing rDNA inserts complementary to domains 1 and 2 of 16S RNA from the 5'end up to nucleotide 868 were used to select contiguous or overlapping RNA sections. The proteins covalently crosslinked to each RNA section were identified as S3, S4, S5, S7, S9, S18, S20 and S21. Several crosslinks are compatible with previously published sites for proteins S5, S18, S20 and S21; others for proteins S3, S4, S7, S9, S18 correspond necessarily to new sites.  相似文献   

17.
Proteins S4, S16/S17 and S20 of the 30 S ribosomal subunit of Escherichia coli+ associate with specific binding sites in the 16 S ribosomal RNA. A systematic investigation of the co-operative interactions that occur when two or more of these proteins simultaneously attach to the 16 S RNA indicate that their binding sites lie near to one another. The binding site for S4 has previously been located within a 550-nucleotide RNA fragment of approximately 9 S that arises from the 5′-terminal portion of the 16 S RNA upon limited hydrolysis with pancreatic ribonuclease. The 9 S RNA was unable to associate with S20 and S16/S17, however, either alone or in combination. A fragment of similar size and nucleotide sequence, termed the 9 S1 RNA, has been isolated following ribonuclease digestion of the complex of 16 S RNA with S20 and S16/S17. The 9 S1 RNA bound not only S4, but S20 and S16/S17 as well, although the fragment complex was stable only when both of the latter protein fractions were present together. Nonetheless, measurements of binding stoichiometry demonstrated the interactions to be specific under these conditions. A comparison of the 9 S and 9 S1 RNAs by electrophoresis in polyacrylamide gels containing urea revealed that the two fragments differ substantially in the number and distribution of hidden breaks. Contrary to expectation, the RNA in the ribonucleoprotein complex appeared to be more accessible to ribonuclease than the free 16 S RNA as judged by the smaller average length of the sub-fragments recovered from the 9 S1 RNA. These results suggest that the binding of S4, S16/S17 and S20 brings about a conformational alteration within the 5′ third of the 16 S RNA.To delineate further the portions of the RNA chain that interact with S4, S16/S17 and S20, specific fragments encompassing subsequences from the 5′ third of the 16 S RNA were sought. Two such fragments, designated 12 S-I and 12 S-II, were purified by polyacrylamide gel electrophoresis from partial T1 ribonuclease digests of the 16 S RNA. The two RNAs, which contain 290 and 210 nucleotides, respectively, are contiguous and together span the entire 5′-terminal 500 residues of the 16 S RNA molecule. When tested individually, neither 12 S-I nor 12 S-II bound S4, S16/S17 or S20. If heated together at 40 °C in the presence of Mg2+ ions, however, the two fragments together formed an 8 S complex which associated with S4 alone, with S16/S17 + S20 in combination, and with S4 + S16/S17 + S20 when incubated with an un fractionated mixture of 30 S subunit proteins. These results imply that each fragment contains part of the corresponding binding sites.  相似文献   

18.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

19.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

20.
After mild trypsin treatment of a complex of ribosomal protein S4 and 16S RNA of Escherichia coli, a large homogeneous fragment of the S4 protein was protected against digestion by its RNA binding site. This fragment was isolated and characterised for molecular weight. It was able to rebind specifically to 16S RNA. Preliminary results indicate that protected protein fragments can also be obtained from other proteins that complex specifically with 23S and 5S RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号