首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new technique using Sepharose 4B column chromatography for the partial purification of the total messenger RNA population of several animal tissues is described. The column when eluted with 0.1M sodium acetate, pH 5.0, containing. 001M EDTA, resolves a total nucleic acid extract into four major peaks. DNA is eluted at the void volume, followed successively by peaks of 18S ribosomal RNA, 4S transfer RNA and 28S ribosomal RNA. Ribonucleic acid containing mRNA activities is eluted after the DNA peak but immediately before the 18S rRNA peak. Hence the column enables quantitative removal of DNA, 5S RNA, tRNA and 28S rRNA from the majority of total cellular mRNA's. Partial segregation of mRNA's in the column is also demonstrated. The method does not require the isolation of polysomes as the initial procedure in mRNA isolation and is readily adaptable to large scale preparations. One hundred mg of total nucleic acid extracted from whole tissues can be fractionated on a 5 × 100 cm Sepharose 4B column. Recovery of total mRNA activities ranges between 60–70% and purification with respect to the total cell extract is 7 to 8 fold.  相似文献   

2.
A technique is described, cytoplasmic zone analysis, by which it is possible to study the flow of different RNA-containing components in the cytoplasm after their release from the nucleus. After a pulse of RNA precursors, the salivary glands of the insect Chironomus tentans are fixed and microdissected for the isolation of three zones of cytoplasm situated at increasing distances from the nucleus. The RNA from each zone is isolated and analyzed by gel electrophoresis. The three ribosomal RNA components, 18 S, 28 S and 5 S RNA, appear in steep, specific radioactivity gradients (exit gradients) during the time interval 2-3 h after a precursor injection, the 18 S RNA gradient lying 30-50 mum peripheral to that of the 28 S or 5 S RNA gradient. Administration of puromycin led to the complete disappearance of the 28 S RNA and most of the 28 S RNA gradient within 45 min, suggesting that the gradients are caused by an engagement of the ribosomal subunits into polysomes close to the nucleus immediately or soon after their exit from the nucleus. The gradients may offer a unique model for the study of polysome formation and maintenance in vivo.  相似文献   

3.
CL-Sepharose 4B column chromatography has been used for the separation of four major classes of mammalian nucleic acids in a single chromatographic run. Gel filtration at 2.5 M NaCl separated DNAs (containing RNA hybrids) from tRNAs. The 18 S RNA (containing 3-5 wt% of small 5 S RNA and RNA degradative products) was eluted at 0.7 M NaCl, and 28 S RNA (containing hnRNAs) was eluted at 0.1 M NaCl. Poly(A)+ mRNAs were detected in both 18 and 28 S RNA fractions. The present procedure is suitable for both analytical and preparative work and may serve as an initial step for the further isolation of ultrapure nucleic acid preparations.  相似文献   

4.
Acid guanidium phenol preparations such as TRIzol allow the reproducible isolation of high-quality total RNA from various sources. However, if applied to minimal sample sizes, the quality parameters of the isolated RNA are often low. Here we present an approach to improve the 260/280- and 230/260-nm ratios of such preparations as well as the ratio of the 18S/28S RNA. A simple extraction with 1-butanol eliminates smearing of the 28 S RNA and restores the characteristic ultraviolet (UV) spectrum of highly purified RNA. Application of the method is demonstrated for fluorescence-activated cell sorting (FACS)-sorted cells where the population of interest is often small.  相似文献   

5.
6.
A considerable excess of small ribosomal subunits was observed in L cells grown in suspension culture. The ratio between the small and large ribosomal subunits in the cytoplasm was estimated to be 1.17 ± 0.05 for cells dividing every 20 to 24 hours.The 60 S ribosomal subunits were turning over much faster than the 40 S subunits. Half-lives of 155 ± 20 hours for 18 S ribosomal RNA and 82 ± 15 hours for 28 S ribosomal RNA were observed under conditions where the cell number doubled every 24 hours and the viability was 95%. By correcting for cell death the half-lives of 18 S and 28 S ribosomal RNA were estimated to be approximately 300 hours and 110 hours, respectively. During storage of isolated ribosomes the small ribosomal subunits were degraded faster than the large subunits. This shows that the degradation of 60 S subunits was not an artifact taking place during the isolation procedure.It is postulated that the small ribosomal subunits are protected by protein to a greater extent than the 60 S subunits in these rapidly growing cells in suspension culture. The protection may take place both in the nucleus during synthesis, thus avoiding degradation (“wastage”) of nascent subunit precursors, and later in the cytoplasm. A calculation has been carried out to show that the observed excess of small subunits may be accounted for on the basis of a 1:1 synthesis of the small and large ribosomal subunits in the nucleus and different degradation rates in the cytoplasm. The results do not exclude the possibility of a difference in the “wastage” of 18 S and 28 S ribosomal RNA in the nucleus in addition to the difference in the turnover rates in the cytoplasm.  相似文献   

7.
Sucrose density gradient analyses of pH 5.5 and pH 7.4 extracts from rat liver nucleoli revealed the presence of two broad peaks of approximately 60S and 80S, and 60S and 80–100S, respectively. Ribonucleoprotein (RNP) particles containing precursor ribosomal RNA in these peaks have been characterized by electron microscopy and RNA analyses. Spherical particles only were found in the 60S peak of the pH 5.5 extract, from which 28S RNA and smaller RNA (23S and 18S RNA) exclusively were extracted. In the broad 80S peak of the pH 5.5 extract, about 60% of the particles were spherical while 30% were rodlike. In the RNA species present there were 28S plus smaller RNA (80%) and 35S RNA (20%). The 60Speak of the pH 7.4 extract contained mainly spherical particles (84%), and the RNA species present was mostly 28S plus smaller RNA (89%). In addition to spherical particles (43%), a number of rodlike (31%) and filamentous molecules (26%) were observed in the heavier side of the 80–100S peak of the pH 7.4 extract, from which 45S (14%), 35S (26%), and 28S and smaller RNA (60%) were extracted. Thus the precursor ribosomal particles containing 45S RNA and 35S RNA appear to be filamentous and rodlike molecules, respectively. Folding of loose ribonucleoprotein filaments into compact, spherical, large subparticles may be part of the maturation process of ribosomal large subparticles, in addition to the so-called sequential cleavage of RNA.  相似文献   

8.
A Paracentrotus lividus genomic library was constructed using sperm DNA prepared from a single animal. The DNA was fragmented by partial digestion with DNase II, sized on a preparative agarose gel and inserted in the Pst I site of pBR 322 by the dG X dC tailing method. Recombinant plasmids containing ribosomal DNA were isolated, a restriction map of the gene was determined and the 18S and 26S transcribed sequences were located by S1 protection mapping. The organization of the ribosomal genes in genomic DNA of individual animals and of a pool of animals was studied by blot-hybridization of the restriction fragments, using as probes nick-translated 32P-labelled cloned ribosomal DNA fragments or 18S and 26S sea-urchin ribosomal RNA. The repeat length of the ribosomal unit was about 10.5 X 10(3) bases. A comparison of the restriction patterns of DNA from different animals showed a marked sequence heterogeneity in the spacer region of these genes. Variations of about 200 base pairs were detectable in the length of the spacer of some individuals.  相似文献   

9.
RNA isolation is difficult in some plants and algae because phenolics, polysaccharides, or other compounds can bind or co-precipitate with RNA, and because the success of RNA isolation can be strain-specific and species-specific. To create an improved RNA isolation protocol for Laminaria japonica Aresch (Laminariaceae, Phaeophyta), four methods for extracting RNA were tested. A cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol was developed that clearly showed 28S and 18S ribosomal RNA bands and produced RNA with high yield (68 μg g−1 fresh weight) and high quality (A 260/280 ratio 1.96 ± 0.05). The isolated RNA was intact, and RT-PCR analysis confirmed that further molecular application is feasible.  相似文献   

10.
酿酒酵母菌核糖体RNA沉降系数的初步研究   总被引:1,自引:0,他引:1  
为研究酿酒酵母菌核糖体RNA(rRNA)的沉降系数,用酶解法和液氮研磨法裂解酿酒酵母菌的细胞壁,Trizol Reagent提取其总RNA,同时提取小白鼠和斑马鱼的总RNA进行比较.经紫外分光光度计检测和甲醛琼脂糖变性胶电泳后,RNA纯度好,条带清晰,无弥散或降解现象.试验发现,与酶解法相比,用液氮研磨法破碎酿酒酵母菌细胞壁提取总RNA所用的成本低,时间少,产率和纯度高,适用于少量样品RNA的提取.同时,酿酒酵母菌与斑马鱼和小白鼠总RNA电泳图谱表明,三者的"18S rRNA"在条带大小方面差异较小,而"28S rRNA"差异较大.利用分析型离心机测得的酿酒酵母菌两个较大rRNA的沉降系数分别为24.7S和18.1S.研究结果表明了真核生物rRNA种类的多样性.  相似文献   

11.
12.
A method to obtain genus-specific DNA probes is suggested. It consists of specific amplification of the intergenic spacer between the 18S and 5.8S ribosomal RNA genes, using primers deduced from conservative ribosomal DNA sequences. The utility of the method is demonstrated on isolation of the 209 b.p. spacer fragment from the genomic DNA of a plant pathogenic fungus Fusarium oxysporum.  相似文献   

13.
A human glutamate tRNA has been shown to form stable hybrids with 28S ribosomal RNA. This tRNA was purified from HeLa cell cytoplasmic RNA by RNA-RNA solution hybridization followed by the isolation of tRNA-28S rRNA complexes by hybridization-selection with ribosomal DNA or by recovery of the 28S peak from formamide-sucrose gradients. The single hybridizing tRNA species was identified as tRNAGluCUC by sequencing: pU-C-C-C-U-G-G-U-G-m2G-U-C-phi-A-G-U-G-G-D-phi-A-G-G-A-U-U- C-G-G-C-G-C-U-C-U-C-A-C-C-G-C-G-G-C-m5C-m5C-G-G-G-Tm-phi-C-G-A- U-U-C-C-C-G-G-U-C-A-G-G-G-A-A-C-C-AOH. Computer analysis located a nucleotide sequence near the middle of human 28S rRNA which is complementary to 15-26 nucleotides between residues 20 and 50 of this tRNA. An interaction between this tRNA and 28S rRNA suggests that tRNAGluCUC may have functions in the cell in addition to translation.  相似文献   

14.
Rat liver ribosomal RNA (rRNA) free from nuclease contaminants was isolated by a modification of the phenol technique. The 28s and 18s rRNA species were separated by preparative agar-gel electrophoresis. The two rRNA species were heated at different temperatures under various conditions and the amount of undegraded rRNA was determined by analytical agar-gel electrophoresis. The 18s rRNA remained unaltered after heating for up to 10min. at 90 degrees in water, acetate buffer, pH5.0, or phosphate buffer, pH7.0. Under similar or milder conditions 28s rRNA was partially degraded, giving rise to a well-delimited 6s peak and a heterogeneous material located in the zone between 28s and 6s. The dependence of degradation of 28s rRNA on the temperature and the ionic strength of the medium was studied. The greatest extent of degradation of 28s rRNA was observed on heating at 90 degrees in water. It is suggested that the instability of rat liver 28s rRNA is due to two factors: the presence of hidden breaks in the polymer chain and a higher susceptibility of some phosphodiester bonds to thermal hydrolysis.  相似文献   

15.
16.
Secondary structure mapping in the electron microscope was applied to ribosomal RNA and precusor ribosomal RNA molecules isolated from nucleoli and the cytoplasm of mouse L-cells. Highly reproducible loop patterns were observed in these molecules. The polarity of L-cell rRNA was determined by partial digestion with 3′-exonuclease. The 28 S region is located at the 5′-end of the 45 S rRNA precursor. Together with earlier experiments on labeling kinetics, these observations established a processing pathway for L-cell rRNA. The 45 S rRNA precursor is cleaved at the 3′-end of the 18 S RNA sequence to produce a 41 S molecule and a spacer-containing fragment (24 S RNA). The 41 S rRNA is cleaved forming mature 18 S rRNA and a 36 S molecule. The 36 S molecule is processed through a 32 S intermediate to the mature 28 S rRNA. This pathway is similar to that found in HeLa cells, except that in L-cells a 36 S molecule occurs in the major pathway and no 20 S precusor to 18 S RNA is found. The processing pathway and its intermediates in L-cells are analogous to those in Xenopus laevis, except for a considerable size difference in all rRNAs except 18 S rRNA.The arrangement of gene and transcribed spacer regions and of secondary structure loops, as well as the shape of the major loops were compared in L-cells, HeLa cell and Xenopus rRNA. The over-all arrangement of regions and loop patterns is very similar in the RNA from these three organisms. The shapes of loops in mature 28 S RNA are also highly conserved in evolution, but the shapes of loops in the transcribed spacer regions vary greatly. These observations suggest that the sequence complementarity that gives rise to this highly conserved secondary structure pattern may have some functional importance.  相似文献   

17.
Growing and confluent cultures of mouse fibroblasts were labeled with 3H-uridine and chased with an excess of nonradioactive uridine to investigate the turnover of ribosomal RNA. Growing cultures did not turn over their 18S and 28S ribosomal RNA; however, confluent cultures did show ribosomal RNA (rRNA) turnover. If the cells were labeled while growing, and chased when confluent, 18S RNA displayed a two-component decay curve, while 28S RNA showed only single-component decay, similar in lifetime to the first component of the 18S RNA decay curve. If the cells were labeled while confluent, both the 18S and 28S RNA showed single-component decay curves with a lifetime possibly only slightly longer than the lifetime of the first component of the 18S RNA and the single component of the 28S RNA of the cultures labeled while growing.  相似文献   

18.
19.
The arrangement of the DNA sequences coding for the ribosomal 5.8 S RNA in the genome of Xenopus laevis has been studied. In Xenopus the 5.8 S cistrons, like the ribosomal 28 S and 18 S cistrons, are reiterated some 600-fold (Clarkson et al., 1973a). When banded in caesium chloride, the 5.8 S cistrons separate from somatic DNA of high molecular weight and band as a distinct satellite, indicating a clustered arrangement in the genome. The buoyant density of this satellite (1.723 g cm?3) corresponds to that of the ribosomal DNA satellite.It has previously been shown that the ribosomal DNA sequences have been deleted from the genome of the anucleotide Xenopus mutant. Our findings, first that the anucleolate mutant does not synthesize 5.8 S RNA and second that somatic DNA from this mutant does not detectably hybridize with 5.8 S RNA, demonstrate that the 5.8 S cistronic complement has been similarly deleted. This finding supports our contention that 5.8 S sequences are clustered on chromosomal DNA and further suggests that they are located close to or within the rDNA complements in the nucleolus organizer region.Pre-hybridization to saturation with unlabelled 5.8 S RNA results in only a slight increase in the buoyant density of denatured 5.8 S coding sequences from low molecular weight DNA. Since a contiguous arrangement of the 5.8 S sequences would give rise to a much larger increase in density, it follows that, although clustered, the sequences must be intercalated within stretches of other DNA. By contrast, pre-hybridization of the somatic DNA with unlabelled 28 S or 18 S ribosomal RNAs results in large shifts in the buoyant density of the 5.8 S sequences. These shifts indicate that the 5.8 S sequences are closely linked to both 28 S and 18 S coding sequences.It is concluded that the 5.8 S cistrons are interspersed along the ribosomal DNA sense strand and that each is located together with a 28 S and an 18 S cistron in a ribosomal repeat unit. Estimates, obtained from the pre-hybridization experiments, of the separations between the 5.8 S and the 28 S and 18 S sequences, are combined in a model of the ribosomal repeat unit. In this model the 5.8 S cistron is located within the transcribed spacer which links the 28 S and 18 S coding sequences.  相似文献   

20.
High-quality RNA from cells isolated by laser capture microdissection   总被引:11,自引:0,他引:11  
Laser capture microdissection (LCM) provides a rapid and simple method for procuring homogeneous populations of cells. However, reproducible isolation of intact RNAfrom these cells can be problematic; the sample may deteriorate before or during sectioning, RNA may degrade during slide staining and LCM, and inadequate extraction and isolation methods may lead to poor recovery. Our report describes an optimized protocol for preparation of frozen sections for LCM using the HistoGene Frozen Section Staining Kit. This slide preparation method is combined with the PicoPure RNA Isolation Kitfor extraction and isolation of RNA from low numbers of microdissected cells. The procedure is easy to perform, rapid, and reproducible. Our results show that the RNA isolated from the LCM samples prepared according to our protocol is of high quality. The RNA maintains its integrity as shown by RT-PCR detection of genes of different abundance levels and by electrophoretic analysis of ribosomal RNA. RNA obtained by this method has also been used to synthesize probes for interrogating cDNA microarray analyses to study expression levels of thousands of genes from LCM samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号