首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A developmentally regulated carbohydrate-binding protein from the capture organs of Arthrobotrys oligospora, not present on hyphae, was isolated and partially characterized. Surface structures of A. oligospora were radiolabeled with [125I]iodosulfanilic acid. The fungus was homogenized, and the homogenate was passed over an affinity column containing N-acetyl-D-galactosamine immobilized to Sepharose 6B. The bound radiolabeled protein was eluted from the affinity column with a glycine-hydrochloride buffer (pH 3.0), concentrated, and chromatographed on a metal chelate affinity gel containing Ca2+. EDTA was used as an eluant for the radiolabeled protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with autoradiography revealed a molecular weight for the carbohydrate- and cation-binding polypeptide of ca. 20,000.  相似文献   

2.
Carboxymethylated beta-galactosidase from Escherichia coli was dissociated at 100 degrees C to form carboxymethylated fragments A and B. The mol.wts. of carboxymethylated fragments A and B were determined by gel filtration to be 64300 and 22400 respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of carboxymethylated fragments A and B that had been pretreated with 2-mercaptoethanol and sodium dodecyl sulphate yielded mol.wts. of 64000 and 22100 respectively. Carboxymethylated fragments A and B had arginine as their C-terminal amino acid. When a crude extract of E. coli M15 was filtered through a column of Sepharose 6B, it was found that carboxymethylated fragment B could restore beta-galactosidase activity when added to fractions having mol.wts. estimated to be 123000, 262000 and 506000. These fractions are referred to as ;complementable fractions'. Similarly, it was found that carboxymethylated fragment A could restore enzyme activity to tractions having mol.wts. estimated to be 63000, 253000 and 506000. Estimates of the molecular weights of the beta-galactosidase activity obtained by restoration with carboxymethylated fragments A and B were made by filtering the active enzyme through another column of Sepharose 6B. The enzyme obtained by complementation with carboxymethylated fragment B, i.e. the complemented enzyme, had mol.wt. 525000, and that obtained with carboxymethylated fragment A had mol.wts. of 525000, 646000 and 2000000. The latter finding suggests that multiple forms of complemented beta-galactosidase can exist.  相似文献   

3.
Surface receptors of guinea pig peritoneal macrophages specific for the Fc region of IgG (Fc gamma receptor) were isolated and identified as a surface-radioiodinated component with a molecular weight of 44,000 that bound in an Fc-specific manner to IgG2 of guinea pig immunoglobulin immobilized in any of the following three different ways: IgG2 antibody in insoluble immune complex, IgG2 antibody bound to antigen-coupled Sepharose, and IgG2 covalently coupled to Sepharose. In order to obtain the Fc gamma receptor retaining the binding activity, the Fc-binding component was isolated by IgG2 affinity chromatography in which mild acidic buffer (pH 5.0-4.0) was chosen to elute the component bound to the affinity column. Forty-five to sixty-two percent of the eluted radioactivity was shown to rebind to the IgG2-affinity column. The bound fraction showed a single radioactive peak of 44,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Fc-binding component isolated by the affinity chromatography behaved similarly in gel filtration in the presence of a detergent, as did the detergent-solubilized Fc gamma receptor before isolation by affinity chromatography. These results suggested that the Fc gamma receptor was isolated in a native form. Furthermore, it was confirmed that the isolated Fc gamma receptor is distinct from actin or the actin-like protein (DNase I-binding protein) which had been reported to bind to IgG-affinity column.  相似文献   

4.
Aminoethylated beta-galactosidase from Escherichia coli was cleaved by CNBr. The fragment C4a was purified by gel filtration and ion-exchange chromatography. The molecular weight of the fragment C4a was determined to be 9000 +/- 600. The N-terminal amino acid was found to be isoleucine. Qualitative examination of homogeneity was carried out by disc-gel electrophoresis. The fragment C4a was shown to be active as an alpha donor in complementation of beta-galactosidase activity in vitro with E. coli mutant M15, which has a deletion in the alpha region of the z gene. The molecular weights of complementable fractions from mutant M15 were found to be 123 000 +/- 2500 and 507 000 +/- 11 000, and of the complemented enzyme 522 500 +/- 11 400.  相似文献   

5.
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.  相似文献   

6.
Immobilized β-galactosidase gel was prepared using poly(vinylpyrrolidone) (PVP) under β-ray irradiation. In contrast to the gelation of N-vinylpyrrolidone monomer–enzyme solution, the gelation of PVP-β-galactosidase solution (PVP content: 10%) was almost completely uneffected by the dose rate and amount of phosphate present. PVP-enzyme solution was gelled by irradiation with 3.0 Mrad. The expressed activity of the PVP-enzyme gel was about 30% of the initial activity and added activity was almost totally entrapped. No leakage of enzyme from these gels could be detected. Leakage was, however, detected in the case of the gelation of PVP-enzyme solution containing more than 1% of enzyme protein. When the general properties of the gel were compared with those of the native enzyme, the gel proved to be slightly inferior to the native enzyme with respect to optimum temperature, heat stability, pH activity, and pH stability. Continuous hydrolysis of lactose in acid whey could be carried out at 50°C using a column packed with the gel and sawdust and the degree of hydrolysis was found to be almost, constant for 12 days. The merits of using PVP in the immobilization of enzymes include the simplicity of the procedure and the fact that the PVP-enzyme gel can be used in the food industry without anxiety because of its high degree of compatibility with living organisms.  相似文献   

7.
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%–60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.  相似文献   

8.
A mutant strain, KLAM59, of Pseudomonas aeruginosa has been isolated that synthesizes a catalytically inactive amidase. The mutation in the amidase gene has been identified (Glu59Val) by direct sequencing of PCR-amplified mutant gene and confirmed by sequencing the cloned PCR-amplified gene. The wild-type and altered amidase genes were cloned into an expression vector and both enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide followed by gel filtration chromatography. The mutant enzyme was catalytically inactive, and it was detected in column fractions by monoclonal antibodies previously raised against the wild-type enzyme using an ELISA sandwich method. The recombinant wild-type and mutant enzymes were purified with a final recovery of enzyme in the range of 70–80%. The wild-type and mutant enzymes behaved differently on the affinity column as shown by their elution profiles. The molecular weights of the purified wild-type and mutant amidases were found to be 210,000 and 78,000 Dalton, respectively, by gel filtration chromatography. On the other hand, the mutant enzyme ran as a single protein band on SDS-PAGE and native PAGE with a M r of 38,000 and 78,000 Dalton, respectively. These data suggest that the substitution Glu59Val was responsible for the dimeric structure of the mutant enzyme as opposed to the hexameric form of the wild-type enzyme. Therefore, the Glu59 seems to be a critical residue in the maintenance of the native quaternary structure of amidase.  相似文献   

9.
A protein separation scheme combining affinity or ion exchange sorption with hollow fiber cross-flow filtration is described. Sorptive gel particles were loaded into the shell side of a hollow fiber membrane module. In the adsorption step, crude protein mixtures were passed through the lumen and permeating proteins passed through the membrane to bind on the gel particles in the shell. During elution, a buffer of adequate ionic strength to desorb the bound proteins was passed through the lumen and permeated through the shell. The eluant was then collected at the outlet to the shell of the hollow fiber module. The concept is illustrated by two examples: the purification of butyrylcholinesterase (EC 3.1.1.7) from raw horse serum using the affinity gel procainamide-Sepharose as the packing and the separation of carboxylesterase (EC 3.1.1.1) from beef liver homogenate using DEAE-Sephadex as the packing. The technique has the advantage of high volumetric throughputs typical of hollow fiber membrane modules as well as the high capacity characteristic of chromatographic packings. In addition, cross-flow filtration of particulates, agglomerates, and debris in passing protein from lumen to shell side can help eliminate the need for extensive pretreatment.  相似文献   

10.
Activation of mutant β-galactosidase by antibodies can be explained by a “selection” mechanism in which the antibody binds and stabilizes those mutants in a native-like conformation and by an “induction” mechanism where binding of the antibody itself induces a conformational change activating β-galactosidase. The “selection” hypothesis was tested by passing β-galactosidase through a column packed with monoclonal antibody-derivatized Sepharose. The antibody retains the active, in preference to the inactive, proteins. The “induction” mechanism was tested by mixing antibody–Sepharose with mutant β-galactosidase and measuring enzyme activity before mixing and that remaining in the supernatant. The activity of the antibody–Sepharose pellet exceeded the sum of the original activity plus supernatant activity. As a result of these experiments, both mechanisms are found to be operative.  相似文献   

11.
Porcine pancreatic phospholipase A2 (PLA2) was immobilized to Sepharose 4B and porcine serum was passed through this affinity column. Bound substances were eluted by an EDTA-containing buffer and fractionated in a Sepharose 6B column. A single protein peak of the eluate from the latter column was found to inhibit PLA2 activity in a dose-dependent manner in an assay system using radioactive lecithin as a substrate and porcine pancreatic PLA2 as the enzyme source. The serum fraction containing the PLA2 inhibitory protein(s) (PIP) appeared inhomogeneous on SDS-polyacrylamide gel electrophoresis with two major bands close to each other, corresponding to a molecular weight of approximately 60,000. It was concluded that PIP might act as a protective principle against autodigestion in acute pancreatitis and other inflammatory diseases as well as playing a regulatory role in prostaglandin metabolism.  相似文献   

12.
Galactosylceramide β-galactosidase (EC 3.2.1.46) has been partially purified from liver of a patient who died of Krabbe disease. Approximately 700-fold purification was achieved by solubilization, adsorption with immobilized concanavalin A, gel filtration through Bio-Gel A-1.5m and chromatography on immobilized sphingosine. The relative increase in crossreacting material and residual galactosylceramidase and lactosylceramidase I activities of the mutant enzyme was essentially identical to that obtained for the enzyme partially purified by the same procedure from normal liver control. An apparent molecular weight of about 750,000 and similar electrophoretic mobilities were observed for both enzymes. In contrast, catalytic properties and stability of the enzyme protein were severely affected in the mutant as compared to the normal enzyme. The apparent Km values of the mutant enzyme for β-galactosidase activities toward galactosylceramide and lactosylceramide in the presence of pure sodium taurocholate were 14 and 4 times, respectively, higher than the normal values. Incubation for 4 min at 52 °C or dialysis against 1.3 m urea caused a 50% loss of residual enzymatic activity of the mutant enzyme, whereas a 35-min incubation or dialysis against 5.6 m urea was required for 50% inactivation of the normal enzyme. These findings indicate that the mutation in Krabbe disease leads to synthesis of normal quantities of catalytically and structurally altered protein.  相似文献   

13.
A simple affinity system which required coupling of alpha-L-fucose to Sepharose 4B by epichlorohydrin treatment of Sepharose 4B in the presence of alpha-L-fucose under alkaline conditions has been described. A partially purified preparation of monkey brain alpha-L-fucosidase (alpha-L-fucoside fucohydrolase, EC 3.2.1.51) was resolved at pH 5.0 into two major fractions: one bound and one retarded. The enzyme bound to the affinity column and specifically eluted by 2 mM alpha-L-fucose at pH 5.0 appeared to be homogeneous by polyacrylamide gel electrophoresis and was constituted mainly by the tetrameric form of the enzyme. The enzyme fraction retarded by the affinity column was found to contain mainly the monomeric form of the enzyme. Additional evidence for the different molecular forms of the enzyme in the bound and retarded fractions came from pH activity profiles and heat inactivation studies. The fucose-Sepharose appeared to bind the tetrameric form of the enzyme specifically and, further, alpha-L-fucose helped to retain the molecular integrity of the tetrameric enzyme.  相似文献   

14.
The reaction of Mucor miehei protease with concanavalin A was followed by a turbidimetric assay in the pH range 5-8. At pH 4.0, no turbidity developed but binding of the enzyme to concanavalin A could be demonstrated by gel filtration. Two fractions of apparent molecular weight 65000 and 52000 were isolated, the 65000 molecular weight species apparently representing a protomer of concanavalin A (24000) bound to the enzyme. An analysis of the circular dichroism spectrum of this complex suggested that protomer binding results in a conformational change in the enzyme which is associated with a 30% increase in proteolytic activity. At pH 6.0, the enzyme was strongly bound to columns of concanavalin A Sepharose but could be removed by including alpha-methyl D-glucoside and NaC1 in the elution buffer. Some column degradation occurred at room temperature but was not detectable at 4 degrees C where rapid elution of the enzyme resulted in a greater than 90% yield of highly active protein. Periodate-oxidized Mucor miehei protease and Mucor renin did not react with concanavalin A and were not bound to the affinity column.  相似文献   

15.
A method for the chromatographic separation of human adenosine deaminase (ADA) from murine and monkey ADA is described. This procedure was developed in order to detect the expression of low or moderate levels of human ADA following retroviral-mediated gene transfer of cloned human ADA gene sequences into both mouse and monkey cells. Protein separation was achieved on a Mono Q (HR 5/5) anion-exchange column using the Pharmacia fast protein liquid chromatography system and was found to be a highly reproducible method yielding enzymatically active protein. An increasing linear gradient extending from 0.05 to 0.5 M potassium chloride (pH 7.5) was used to elute the enzyme. Under these conditions, most human ADA does not bind to the column and elutes in the low-salt buffer (0.05 M KCl), while murine ADA elutes at 0.12 M KCl and monkey ADA at 0.15 M KCl. The column fractions were assayed for ADA activity, and the characteristic isozyme banding patterns for human, mouse, and monkey ADA were confirmed by starch gel electrophoresis. This procedure allows the rapid and reproducible separation of human ADA from that of other species and yields partially purified enzymatically active protein.  相似文献   

16.
A procedure for the purification of β-lactamase from Bacillus cereus in a single chromatographic step is described. The enzyme is isolated from the crude culture supernatant by affinity chromatography. An inhibitor, methicillin, was immobilised by covalent attachment to the insoluble column gel, Sepharose. The enzyme was adsorbed to the column ligand from the crude supernatant and was subsequently released by increasing the ionic strength of the eluting buffer. In this way the enzyme was selectively isolated from other proteins in the crude supernatant. About 98% of the original β-lactamase activity was recovered in the purified enzyme fraction.  相似文献   

17.
Isolation and characterization of methionine synthetase from human placenta   总被引:1,自引:0,他引:1  
The cobalamin-dependent enzyme, methionine synthetase, has been purified approximately 1000-fold to apparent homogeneity from human placenta with a 19% recovery. The final two steps of the purification utilized two different affinity columns. The first was a N5-methyltetrahydrofolate-cystamine-agarose column, and the second was a S-adenosylhomocysteine-agarose column. The enzyme was eluted from the first affinity column by buffer containing reducing agent which released the folate and the enzyme while elution from the second affinity column was accomplished with buffer containing 0.5 M sodium chloride. Criteria for purity were the observations that single peaks of enzyme activity, protein, and cobalamin with an apparent molecular weight of 160,000 were obtained by gel filtration and that holomethionine synthetase contained 1 mol of cobalamin/mol of protein. Furthermore, analysis by high performance liquid chromatography using a molecular weight sizing column demonstrated a single peak of protein with a corresponding cobalamin peak. This single peak of protein was progressively converted to a second protein peak that was enzymatically inactive, and this conversion was associated with a directly proportional loss of enzyme activity and cobalamin from the first peak. Methionine synthetase appeared to have a molecular weight of 160,000 on unreduced sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and subunits of Mr 90,000, 45,000, and 35,000 on reduced sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis.  相似文献   

18.
When calf rennet containing approximately 15% pepsin was applied to a Cibacron Blue agarose column at pH 5.5 in a low salt medium, pepsin passed through unadsorbed while chymosin was bound to the gel in the column. After washing the column, the bound chymosin was eluted with 1.7 M NaCl or 50% (v/v) aqueous ethylene glycol. The salt eluate was analyzed and found to contain greater than 97% pure chymosin. The fraction that passed through unadsorbed was found to contain greater than 96% pure pepsin. Thus a complete separation of chymosin and pepsin was effected by this technique without having to destroy either enzyme. Both enzymes are highly negatively charged at pH 5.5 but the separation does not arise from anion exchange since the gel functions as a cation exchanger. The separation appears to result from a combination of hydrophobic and electrostatic interactions of chymosin with Blue agarose. It is suggested that the enhanced affinity of chymosin to the Blue gel over pepsin may arise from topographically specified interaction between chymosin and the blue chromophore. Differential surface hydrophobicity may also play a key role, since in the presence of 0.7 M Na2SO4 the same behavior as at low ionic strength is observed.  相似文献   

19.
The presence of nine different glycosidases was demonstrated in the crude extract of mature mung bean seeds. N-Acetyl β-D-glucosaminidase, α-D-galactosidase and β-D-glucosidase were each resolved into two respective active forms by gel filtration. The other glycosidases showed single forms only. The apparent MWs of the glycosidases were determined. The glycosidases were absorbed to Con A-Sepharose column, with the exception of a small percentage of α-galactosidase and α-mannosidase which were eluted unretarded. The bound enzymes displayed varying affinities for the immobilized lectin, indicating differences in glycosylation. With the exception of β-galactosidase and invertase, all the glycosidase activities were detected in the protein bodies isolated from the seeds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号