首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method has been developed for the separation of leucine, 2-ketoisocaproic acid, isovaleryl CoA, 3-methylcrotonyl CoA, 3-hydroxy-3-methylglutaryl CoA, 3-methylglutaconyl CoA, acetyl CoA, and acetoacetic acid by ion-exchange high-performance liquid chromatography. The analysis requires 180 min. Use of this method to assess the catabolism of radiolabeled leucine in normal cultured human skin fibroblasts shows that these cells do not accumulate CoA esters, but convert leucine mainly to 2-ketoisocaproic acid, glutamate, and hydroxyisovalerate. In the fibroblasts of a patient with maple syrup urine disease, only 2-ketoiscaproic acid is produced from leucine.  相似文献   

2.
Acetyl CoA carboxylase, ATP-citrate lyase and fatty acid synthetase were purified to homogeneity by a simple procedure. The purification method consists of polymerization of acetyl CoA carboxylase with citrate followed by avidin-Sepharose affinity chromatography. ATP-citrate lyase and fatty acid synthetase were isolated as by-products of acetyl CoA carboxylase purification and are separated from each other by chromatography on DE-52. ATP-citrate lyase was further purified by CoA-agarose affinity chromatography and fatty acid synthetase was purified on Bio-Gel A-1.5m. Purified ATP-citrate lyase, acetyl CoA carboxylase and fatty acid synthetase had specific activities of 9.9, 2.8 and 1.8 U/mg respectively with an over all recovery of 30, 25 and 50% respectively. Using these purified enzymes, we found that ATP-citrate lyase and acetyl CoA carboxylase were phosphorylated in vitro by both cAMP-dependent protein kinase and ATP-citrate lyase kinase whereas fatty acid synthetase was not phosphorylated by these protein kinases.  相似文献   

3.
A rapid and stoichiometric method for the synthesis of analogues of coenzyme A is described. The method links the enzymes pantothenate kinase, phosphopantotheine adenylyltransferase, and dephosphocoenzyme A kinase in vitro to generate a variety of CoA analogues from chemically synthesized pantothenic acid derivatives. The Escherichia coli CoA biosynthetic enzymes were overexpressed as hexa-histidine-tagged proteins, providing an abundant source of pure active catalysts for the reaction. The synthesis of five novel CoA derivatives is reported and the method is shown to be robust and tolerant of a number of different pantothenic acid structures, which indicates that the procedure should be widely applicable.  相似文献   

4.
Studies were performed on methods of storage of rat jejunal tissue that would preserve activities of the lipid reesterifying enzymes, acyl CoA:monoglyceride acyltransferase and fatty acid CoA ligase. Storage at -80 degrees C of microsomes prepared from jejunal mucosa or storage of lyophilized microsomes at -20 degrees C was shown to preserve acyl CoA:monoglyceride acyltransferase very well for a matter of weeks. Preservation of fatty acid CoA ligase activity was adequate with either method, but results were not as good as for the transacylase enzyme.  相似文献   

5.
Investigations on the cholic acid CoA ligase activity of rat liver microsomes were made possible by the development of a rapid, sensitive radiochemical assay based on the conversion of [3H]choloyl-CoA. More than 70% of the rat liver cholic acid CoA ligase activity was associated with the microsomal subcellular fraction. The dependencies of cholic acid CoA ligase activity on pH, ATP, CoA, Triton WR-1339, acetone, ethanol, magnesium, and salts were investigated. The hypothesis that the long chain fatty acid CoA ligase activity and the cholic acid CoA ligase activity are catalyzed by a single microsomal enzyme was investigated. The ATP, CoA, and cholic (palmitic) acid kinetics neither supported nor negated the hypothesis. Cholic acid was not an inhibitor of the fatty acid CoA ligase and palmitic acid was not a competitive inhibitor of the cholic acid CoA ligase. The cholic acid CoA ligase activity utilized dATP as a substrate more effectively than did the fatty acid CoA ligase activity. The cholic acid and fatty acid CoA ligase activities appeared to have different pH dependencies, differed in thermolability at 41 degrees, and were differentially inactivated by phospholipase C. Moreover, fatty acid CoA ligase activity was present in microsomal fractions from all rat organs tested while cholic acid CoA ligase activity was detected only in liver microsomes. The data suggest that separate microsomal enzymes are responsible for the cholic acid and the fatty acid CoA ligase activities in liver.  相似文献   

6.
Abstract

Acetyl CoA carboxylase, ATP-citrate lyase and fatty acid synthetase were purified to homogeneity by a simple procedure. The purification method consists of polymerization of acetyl CoA carboxylase with citrate followed by avidin-Sepharose affinity chromatography. ATP-citrate lyase and fatty acid synthetase were isolated as by-products of acetyl CoA carboxylase purification and are separated from each other by chromatography on DE-52. ATP-citrate lyase was further purified by CoA-agarose affinity chromatography and fatty acid synthetase was purified on Bio-Gel A-1.5m. Purified ATP-citrate lyase, acetyl CoA carboxylase and fatty acid synthetase had specific activities of 9.9, 2.8 and 1.8 U/mg respectively with an over all recovery of 30, 25 and 50% respectively. Using these purified enzymes, we found that ATP-citrate lyase and acetyl CoA carboxylase were phosphorylated in vitro by both cAMP-dependent protein kinase and ATP-citrate lyase kinase whereas fatty acid synthetase was not phosphorylated by these protien kinases.  相似文献   

7.
Fatty acid CoA ligase (AMP) (EC 6.2.1.3) specific activity was increased approximately 2-fold in microsomes prepared from isolated rat fat cells incubated with 400 microunits of insulin/ml (2.9 nM) for 45 to 60 min compared to paired controls using an assay based on the conversion of [3H]oleic acid to [3H]oleoyl-CoA. Similar insulin-dependent increases in microsomal fatty acid CoA ligase specific activities were observed using an assay based on the conversion of [3H]CoA to fatty acyl-[3H]CoA. Fatty acid CoA ligase activity was predominately (about 80%) associated with the microsomal fraction. The insulin-dependent increase in microsomal fatty acid CoA ligase specific activity was maximal in 2 to 5 min at 400 microunits/ml. At 10 min, 80 to 100 microunits of insulin/ml caused a maximal increase in fatty acid CoA ligase specific activity. Similar apparent Km values for ATP, CoA, and fatty acid were observed for fatty acid CoA ligase activity in microsomal preparations from control and insulin-exposed cells. These data suggest that fatty acid CoA ligase activity is regulated in adipose tissue by insulin. Such regulation may serve to promote the capture of fatty acid and thereby, triacylglycerol synthesis in adipose tissue.  相似文献   

8.
A rapid and simple spectrophotometric method was developed to measure the activity of the condensing enzyme component of the microsomal fatty acid chain elongation system. The intermediate product of the condensation reaction is the beta-ketoacyl CoA which exists in two tautomeric forms, i.e., keto and enol. The addition of bovine serum albumin (BSA) to a cuvette cell containing a beta-ketoacyl CoA derivative resulted in the formation of a 303-nm absorbance peak, characteristic of enolate formation. The beta-ketoacyl CoAs with carbon chain length of 6 to 18 interacted with BSA to produce the 303-nm peak; acetoacetyl CoA was the only beta-keto compound tested which did not interact with BSA to produce the peak. Other compounds which were unaffected by BSA included CoA, free beta-keto acid, beta-hydroxyacyl CoA, acyl CoA, trans-2-enoyl CoA, and malonyl CoA. BSA could not be replaced by ovalbumin; furthermore, denatured (boiling) BSA could not induce the 303-nm peak. The specific activity of the condensing enzyme measured by the spectrophotometric method compares favorably with the activity obtained by the radioactive method. The apparent extinction coefficient (epsilon) for the absorbance peak generated by the beta-keto thioester varied from 5 to 30 mM-1 cm-1 depending on the beta-keto derivative. The spectrophotometric procedure can be used in the determination of the condensing enzyme activity in not only hepatic microsomes but also in kidney and brain microsomes both of which have significantly lower activity. The advantages of the novel method over the radioactive method are that (i) it does not involve the use of radioactive compounds, (ii) it is much less cumbersome and significantly less costly, and (iii) it is rapid and easy to perform.  相似文献   

9.
Mitochondria, peroxisomes, and microsomes were isolated from rat liver homogenates, and stearic acid and lignoceric acid beta-oxidation, as well as stearoyl CoA synthetase and lignoceroyl CoA synthetase activities in the three organelles, were compared. Stearic acid beta-oxidation in peroxisomes was sixfold greater compared to the oxidation in mitochondria. Lignoceric acid beta-oxidation, observed only in peroxisomes, was fivefold lower compared to stearic acid beta-oxidation. Stearoyl CoA synthetase was present whereas lignoceroyl CoA synthetase was absent in mitochondria. Stearoyl CoA synthetase and lignoceroyl CoA synthetase activities were present in microsomes and peroxisomes, but the activity of stearoyl CoA synthetase was several-fold greater compared to lignoceroyl CoA synthetase in both organelles. The differing responses to detergents and phospholipids of stearoyl CoA and lignoceroyl CoA synthetase activities in microsomes as well as peroxisomes indicated that each activity was catalyzed by a separate enzyme. Differences in detergent and phospholipid response were also noted when either stearoyl CoA or lignoceroyl CoA synthetase activity in one organelle was compared with the corresponding activity in the other organelle, suggesting that the same activity in different organelles may be catalyzed by separate enzyme proteins.  相似文献   

10.
Cao YZ  Huang AH 《Plant physiology》1987,84(3):762-765
In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above species were tested for their preference in using different forms of acyl coenzyme A (CoA). Lauroyl CoA, oleoyl CoA, and erucoyl CoA individually or in equimolar mixtures at increasing concentrations were added to the assay mixture containing diolein, and the formation of triacylglycerols from the acyl groups at 24, 32, and 40°C was analyzed. The Cuphea enzyme preferred lauroyl CoA to oleoyl CoA, and was inactive on erucoyl CoA. The maize enzyme had about equal activities on oleoyl CoA and lauroyl CoA, and was inactive on erucoyl CoA. Enzymes from both rapeseed and Canola had the same pattern of acyl CoA preference, with highest activities on lauroyl CoA. The two enzymes were more active on oleoyl CoA than on erucoyl CoA at high acyl CoA concentrations (10 and 20 micromolar) at 24°C, but were more active on erucoyl CoA than on oleoyl CoA at low acyl CoA concentrations (1.36 micromolar or less) at 32 and 40°C. These findings are discussed in terms of the contribution of the enzyme to the acyl specificity in storage triacylglycerols and the implication in seed oil biotechnology.  相似文献   

11.
To develop an efficient method for the production of coenzyme A (CoA), optimal conditions for its formation from pantothenic acid, cysteine, and adenine were studied. A number of microorganisms were screened for production of CoA. Strains belonging to the genera Sarcina, Bacillus, Microbacterium, Micrococcus, and Serratia accumulated CoA. Among these, Sarcina lutea was selected as the best organism, and the culture conditions for the production of CoA were investigated with this organism. Under optimal conditions, 600 mug of CoA per ml was accumulated in the culture broth. CoA was readily isolated in high purity by the use of charcoal, diethylaminoethyl-cellulose, Sephadex G-25, and Dowex-50. Yields of isolated CoA were over 33% from culture broth.  相似文献   

12.
The objects of structural studies on biotin-enzymes were acetyl CoA-carboxylase and pyruvate carboxylase of Saccharomyces cerevisiae and beta-methylcrotonyl CoA-carboxylase and acetyl CoA-carboxylase of Achromobacter IV S. It was found that these enzymes can be arranged in three groups. In the first group, as represented by acetyl CoA-carboxylase of Achromobacter, the active enzyme could be resolved in three types of functional components: (1) the biotin-carboxyl carrier protein, (2) the biotin carboxylase, and (3) the carboxyl transferase. In the second group, as represented by beta-methylcrotonyl CoA-carboxylase from Achromobacter only two types of polypeptides are present. The one carries the biotin carboxylase activity together with the biotin-carboxyl-carrier protein, the other one carries the carboxyl transferase activity. In this third group, as represented by the two enzymes of yeast, all three catalytic functions are incorporated in one multifunctional polypeptide chain. The evolution of the different enzymes is discussed. The animal tissues acetyl CoA-carboxylase is under metabolic control, as known from previous studies. It thus has to be expected that the levels of malonyl CoA in livers of rats in all states of depressed fatty acid synthesis are much lower than under normal conditions because the carboxylation of acetyl CoA is strongly reduced and cannot keep pace with the consumption of malonyl CoA by fatty acid synthetase. A new highly sensitive assay method for malonyl CoA was developed which uses tritiated NADPH and measures the incorporation of radioactivity into the fatty acids formed from malonyl CoA in the presence of purified fatty acid synthetase. The application of this method to liver extracts showed that the level of malonyl CoA which amounts to about 7 nmoles per gram of wet liver drops to less than 10% within a starvation period of 24 hr and even further if the starvation period is extended to 48 hr. A low malonyl CoA concentration is also found in the alloxan diabetic animals and in animals being fed a fatty diet after starvation. On the other hand, feeding a carbohydrate rich diet leads to malonyl CoA levels surpassing the levels found after feeding a balanced diet. These observations reconfirm the concept that fatty acid synthesis is principally regulated by the carboxylation of acetyl CoA.  相似文献   

13.
The human bile acid pool composition is composed of both primary bile acids (cholic acid and chenodeoxycholic acid) and secondary bile acids (deoxycholic acid and lithocholic acid). Secondary bile acids are formed by the 7α-dehydroxylation of primary bile acids carried out by intestinal anaerobic bacteria. We have previously described a multistep biochemical pathway in Clostridium scindens that is responsible for bile acid 7α-dehydroxylation. We have identified a large (12 kb) bile acid inducible (bai) operon in this bacterium that encodes eight genes involved in bile acid 7α-dehydroxylation. However, the function of the baiF gene product in this operon has not been elucidated. In the current study, we cloned and expressed the baiF gene in E. coli and discovered it has bile acid CoA transferase activity. In addition, we discovered a second bai operon encoding three genes. The baiK gene in this operon was expressed in E. coli and found to encode a second bile acid CoA transferase. Both bile acid CoA transferases were determined to be members of the type III family by amino acid sequence comparisons. Both bile acid CoA transferases had broad substrate specificity, except the baiK gene product, which failed to use lithocholyl-CoA as a CoA donor. Primary bile acids are ligated to CoA via an ATP-dependent mechanism during the initial steps of 7α-dehydroxylation. The bile acid CoA transferases conserve the thioester bond energy, saving the cell ATP molecules during bile acid 7α-dehydroxylation. ATP-dependent CoA ligation is likely quickly supplanted by ATP-independent CoA transfer.  相似文献   

14.
The concentration of fatty acids in the blood or perfusate is a major determinant of the extent of myocardial fatty acid oxidation. Increasing fatty acid supply in adult rat increases myocardial fatty acid oxidation. Plasma levels of fatty acids increase post-surgery in infants undergoing cardiac bypass operation to correct congenital heart defects. How a newborn heart responds to increased fatty acid supply remains to be determined. In this study, we examined whether the tissue levels of malonyl CoA decrease to relieve the inhibition on carnitine palmitoyltransferase (CPT) I when the myocardium is exposed to higher concentrations of long-chain fatty acids in newborn rabbit heart. We then tested the contribution of the enzymes that regulate tissue levels of malonyl CoA, acetyl CoA carboxylase (ACC), and malonyl CoA decarboxylase (MCD). Our results showed that increasing fatty acid supply from 0.4 mmol/L (physiological) to 1.2 mmol/L (pathological) resulted in an increase in cardiac fatty acid oxidation rates and this was accompanied by a decrease in tissue malonyl CoA levels. The decrease in malonyl CoA was not related to any alterations in total and phosphorylated acetyl CoA carboxylase protein or the activities of acetyl CoA carboxylase and malonyl CoA decarboxylase. Our results suggest that the regulatory role of malonyl CoA remained when the hearts were exposed to high levels of fatty acids.  相似文献   

15.
The distribution of the enzyme activities relating to CoA biosynthesis from pantothenic acid in various microorganisms and the effect of CoA on these activities are described.

High activities of partial reactions involved in CoA biosynthesis were surveyed in various type culture strains involving bacteria, actinomycetes, lactic acid bacteria, molds, and yeasts. Generally, higher activities were found in bacteria. CoA inhibited the phosphorylation of pantothenic acid, and resulted in a decrease of CoA production in all the CoA producing strains, while only a little inhibition by CoA was observed in the other reactions, and CoA production from pantothenic acid 4′-phosphate by Brevibacterium ammoniagenes IFO 12071 was not repressed even in the presence of 4mm of CoA. Extracellular excretion of the enzymes of CoA biosynthesis was observed when cells were in contact with sodium lauryl sulfate. Degrading activity against CoA and that against AMP were relatively lower in CoA producing strains when compared with those in other strains. It was confirmed that Brown’s route of CoA biosynthesis operates in Brevibacterium ammoniagenes IFO 12071.  相似文献   

16.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

17.
We report a novel, highly sensitive and selective method for the extraction and quantification of acyl CoA esters from plant tissues. The method detects acyl CoA esters with acyl chain lengths from C4 to C20 down to concentrations as low as 6 fmol in extracts. Acyl CoA esters from standard solutions or plant extracts were derived to their fluorescent acyl etheno CoA esters in the presence of chloroacetaldehyde, separated by ion-paired reversed-phase high-performance liquid chromatography, and detected fluorometrically. This derivitization procedure circumvents the selectivity problems associated with previously published enzymatic methods, and methods that rely on acyl chain or thiol group modification for acyl CoA ester detection. The formation of acyl etheno CoA esters was verified by mass spectrometry, which was also used to identify unknown peaks from chromatograms of plant extracts. Using this method, we report the composition and concentration of the acyl CoA pool during lipid synthesis in maturing Brassica napus seeds and during storage lipid breakdown in 2-day-old Arabidopsis thaliana seedlings. The concentrations measured were in the 3--6 microM range for both tissue types. We also demonstrate the utility of acyl CoA profiling in a transgenic B. napus line that has high levels of lauric acid. To our knowledge, this is the first time that reliable estimates of acyl CoA ester concentrations have been made for higher plants, and the ability to profile these metabolites provides a valuable new tool for the investigation of gene function.  相似文献   

18.
The present study was designed to determine the action of the 2-acetylenic acid thioester on mitochondrial fatty acid chain elongation and beta-oxidation. Addition of 2-decynoyl CoA to a rat liver mitochondrial suspension resulted in a significant stimulation of the rate of oxidation of NADPH and NADH. This enhanced oxidation rate was not due to the mitochondrial trans-2-enoyl CoA reductase-catalyzed conversion of the 2-acetylenic acid thioester to the saturated product, decanoate, as measured by gas-liquid chromatography. On the contrary, the mitochondrial trans-2-enoyl CoA reductase activity was markedly inhibited by the 2-acetylenic acid derivative, as evidenced by the decrease in the reduction of trans-2-decenoyl CoA to decanoic acid. Incubation of the mitochondrial fraction with either NADPH or NADH and 2-decynol CoA resulted in the gas chromatographic identification of three products: beta-ketodecanoate, beta-hydroxydecanoate, and trans-2-decenoate. In the absence of reduced pyridine nucleotide, a single product was formed and identified as beta-ketodecanoate. Confirmation of the identity of this product was obtained by the observation of the formation of the Mg2+-enolate complex (303-nm absorbance peak). These results suggest that, although the 2-decynoyl CoA is an inhibitor of mitochondrial trans-2-enoyl CoA reductase activity, it is a substrate for the mitochondrial trans-2-enoyl CoA hydratase (crotonase). This was confirmed by incubation of 2-decynoyl CoA with commercially purified liver mitochondrial crotonase. The beta-ketodecanoate is formed in a two-step process: hydration of the 2-decynoyl CoA to an unstable enol intermediate which undergoes rearrangement to the beta-ketodecanoyl CoA. Interestingly, although the mitochondrial crotonase can utilize the 2-acetylenic acid thioesters, this was not the case for the peroxisomal bifunctional hydratase which was markedly inhibited by varying concentrations of 2-decynoyl CoA.  相似文献   

19.
A high-performance liquid chromatographic method has been developed to measure short-chain CoA compounds in freeze-clamped liver. Seventeen CoA compounds can be quantitated in 37 min using a 3-micron octadecylsilica column (4.6 mm X 7.5 cm). The chromatographic separation of CoA compounds is conducted with a gradient system of sodium phosphate and acetonitrile. The large amount of uv-absorbing, non-CoA material present in liver extracts is eluted earlier than the CoA compounds when the phosphate concentration is 0.2 M. The CoA compounds that can be resolved by this method include acetoacetyl-CoA, acetyl-CoA, butyryl-CoA, CoASH, crotonyl-CoA, dephospho-CoA, glutathione-CoA, 3-hydroxy-3-methylglutaryl-CoA, isobutyryl-CoA, isovaleryl-CoA, malonyl-CoA, 3-methylcrotonyl-CoA, methylmalonyl-CoA, oxidized-CoA, propionyl CoA, succinyl-CoA, and valeryl-CoA. Comparisons at pH 3 and 6 showed that the stability of the CoA compounds is much greater when perchloric acid extracts of rat liver are adjusted to pH 3. Recovery of CoA standards added in tissue extracts ranged from 83 to 107%. The method is linear over the range of 12 to 700 pmol, and this sensitivity allows acetyl-CoA content to be determined in extracts of as little as 0.1 mg of liver. The values for CoA compounds obtained for freeze-clamped liver from starved rats include (units are nmol/g wet weight +/- SE) malonyl-CoA, 1.50 +/- 0.14; glutathione-CoA, 6.57 +/- 1.72; CoASH, 56.06 +/- 2.90; methylmalonyl-CoA, 4.60 +/- 1.27; succinyl-CoA, 13.52 +/- 0.76; 3-hydroxy-3-methylglutaryl-CoA, 7.06 +/- 0.89; and acetyl-CoA, 100.5 +/- 6.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pantothenic acid (vitamin B(5)) is the natural precursor of coenzyme A (CoA), an essential cofactor in all organisms. The pantothenic acid antimetabolite N-pentylpantothenamide inhibits the growth of Escherichia coli with a minimum inhibitory concentration of 2 microm. In this study, we examine the mechanism of this inhibition. Using the last five enzymes of the CoA biosynthetic pathway in E. coli we demonstrate that N-pentylpantothenamide does not inhibit the CoA biosynthetic enzymes but instead acts as an alternative substrate, forming the CoA analog ethyldethia-CoA. We show that N-pentylpantothenamide is converted to ethyldethia-CoA 10.5 times faster than CoA is biosynthesized from pantothenic acid, demonstrating that ethyldethia-CoA biosynthesis can effectively compete with CoA biosynthesis in the cell. We conclude that the mechanism of toxicity of N-pentylpantothenamide is most likely due to its biosynthetic conversion to the CoA analog ethyldethia-CoA, which may act as an inhibitor of CoA- and acetyl-CoA-utilizing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号