首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A convenient method has been developed for the preparation of enterochelin, the natural iron carrier produced by Escherichia coli. The method employs a mutant strain which is unable to transport the ferric-enterochelin complex into the cell and which excretes large quantities of enterochelin into the culture medium. The addition of excess iron to the medium allows the enterochelin to accumulate as the ferric-enterochelin complex which is purified by ion-exchange chromatography and then dissociated and the free enterochelin further purified by differential extraction and crystallization. The enterochelin is isolated in good yield and appears to be of high purity as judged by a number of criteria.  相似文献   

2.
Iron transport in Escherichia coli K-12   总被引:14,自引:0,他引:14  
The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.List of Abbreviations DHB 2,3-dihydroxybenzoate - DBS 2,3-dihydroxybenzoylserine - NTA nitrilotriacetate - DNP 2,4-dinitrophenol  相似文献   

3.
Properties of the enzyme which hydrolyses enterochelin (a cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine) to 2,3-dihydroxybenzoylserine have been investigated with a view to resolving discrepancies between earlier reports. Enterochelin esterase, previously reported to consists of two components (O'Brien, I.G., Cox, G.B. and Gibson, F. (1971) Biochim. Biophys. Acta 237, 537-549), has been shown to be fully active in the absence of the so-called A component. The hydrolase described previously (Bryce, G.F. and Brot, N. (1972) Biochemistry 11, 1708-1715) as being able to break down enterochelin but not its iron complex, ferric-enterochelin, appears to be identical with the B component of enterochelin esterase. The single component enterochelin esterase corresponding to what was previously described as component B, hydrolyses both enterochelin and ferric-enterochelin. Under the assay conditions used, enterochelin is hydrolysed 2.5 times faster than the complex. Enzymatic activity is inhibited by N-ethylmaleimide and is lost rapidly at 37 degrees C. Activity is stabilized in the presence of ferric-enterochelin, enterochelin, dithiothreitol or certain protein fractions.  相似文献   

4.
Three mutant strains of Escherichia coli have been isolated which are lacking ferric-enterochelin esterase activity. This enzyme catalyzes the hydrolysis of the enterochelin moiety of ferric-enterochelin to yield ultimately three molecules of N-2,3-dihydroxybenzoylserine. The mutants (designated fes(-)) were shown to be unaffected in enterochelin biosynthesis, capable of enterochelin-mediated iron uptake, and able to utilize ferric-dihydroxybenzoylserine complexes normally. When grown under iron-deficient conditions, however, they showed an absolute requirement for added iron or citrate, a phenotype characteristic of mutants defective in some part of the enterochelin system of iron uptake. These results support the theory that iron, taken up by the cell as ferric-enterochelin is only available for general cell metabolism after hydrolysis of the ligand by enterochelin esterase. The three fes(-) strains were shown to be affected in the B component of enterochelin esterase. The fesB gene which is probably the structural gene coding for component B of the esterase, was shown to be located at about minute 14 on the E. coli chromosome together with seven other genes involved in the enterochelin system of iron transport.  相似文献   

5.
When a strain (arcB-) of Escherichia coli, unable to synthesize the iron transport compound enterochelin, was transduced to tonB-, it became resistant to phage phi80 and simultaneously lost the growth response to enterochelin and the ability to transport its iron complex. However, enterochelin precursors (shikimate and 2,3-dihydroxybenzoate) still supported growth, via the synthesis of enterochelin. Dihydroxybenzoate was a better growth factor at a low concentration than it was at higher levels. The evidence suggests that tonB- strains lack an outer membrane component necessary both for the uptake of ferric-enterochelin and for the adsorption of phage phi80. Thus, although ferric-enterochelin cannot penetrate the cell surface from outside, the complex that is formed within the envelope is transported normally into the cell. The aroB-, tonB- mutant also lacked growth reponses to citrate and various hydroxamate siderochromes, which supported growth in the tonB+ parent strain via inducible transport systems for their ferric complexes. The aroB-, tonB- mutant was unable to transport iron in the presence of citrate, but the low-affinity uptake of uncomplexed iron and the transport of amino acids and phosphate were unimpaired. The tonB locus, thus, affects all the known active transport systems for iron, possibly indicating that they share some common outer membrane component.  相似文献   

6.
Enterochelin synthetase activity is controlled by both repression and feed-back inhibition mechanisms. Inclusion of iron in growth media results in synthesis of all four (D, E, F and G) components of enterochelin synthetase being repressed. The specific inhibition of L-serine activation (partial reaction catalyzed by the F component) by the end products, ferric-enterochelin and 2,3-dihydroxybenzoylserine, is shown to inhibit overall enterochelin synthetase activity.  相似文献   

7.
There is good evidence to show that ferric enterochelin is an essential growth factor for a number of Gram-negative pathogenic bacteria exposed to the host iron binding proteins, transferrin and lactoferrin. Tests of nineteen complexes of enterochelin as potential antibacterial agents showed that only those containing either indium (In3+) or scandium (Sc3+) inhibited bacterial growth. In this study, further evidence is presented which demonstrates a competition between the Sc3+ and Fe3+ complexes. The uptake of both complexes is energy dependent and is also repressed in iron-replete cells. The Sc3+ complex accumulates within the cells at 20% of the rate of the Fe3+ complex. The main components of the ferric enterochelin transport system are required for the transport of the Sc3+ complex although some Sc3+ appears to enter the cell by another route. The accumulation, within the cell, of 14C-labelled enterochelin complexes depends on the growth medium. The relationship of the size of the metal ion to the biological activity of the complex is discussed and possible mechanisms of action of the Sc3+ complex are considered.  相似文献   

8.
There is good evidence to show that ferric enterochelin is an essential growth factor for a number of Gram-negative pathogenic bacteria exposed to the host iron binding proteins, transferrin and lactoferrin. Tests of nineteen complexes of enterochelin as potential antibacterial agents showed that only those containing either indium (In3+) or scandium (Sc3+) inhibited bacterial growth. In this study, further evidence is presented which demonstrates a competition between the Sc3+ and Fe3+ complexes. The uptake of both complexes is energy dependent and is also repressed in iron-replete cells. The Sc3+ complex accumulates within the cells at 20% of the rate of the Fe3+ complex. The main components of the ferric enterochelin transport system are required for the transport of the Sc3+ complex although some Sc3+ appears to enter the cell by another route. The accumulation, within the cell, of 14C-labelled enterochelin complexes depends on the growth medium. The relationship of the size of the metal ion to the biological activity of the complex is discussed and possible mechanisms of action of the Sc3+ complex are considered.  相似文献   

9.
Abstract Microcin E492 is a polypeptide antibiotic that is produced and excreted by Klebsiella pneumoniae . Different growth conditions of the producer strain affect microcin activity. The production of a microcin antagonist is responsible for the changes in microcin activity. The microcin antagonist is induced when cells are iron-deprived, resulting in a low microcin activity. The microcin antagonist was purified using a procedure developed for the isolation of a catechol-type siderophore, and its activity was titrated using purified microcin. The inhibitory effect of the microcin antagonist is not observed when this compound is forming a complex with iron. The same inhibitory effect on microcin activity was obtained using purified enterochelin from Escherichia coli . The microcin antagonist was identified as enterochelin through thin-layer chromatography.  相似文献   

10.
Thirty seven strains ofEscherichia coli isolated from the urine of patients with acute symptomatic urinary tract infection were examined for siderophore production: hydroxamate (aerobactin) and phenolate (enterochelin). All the strains were found to produce varying amounts of enterochelin. With the chemical assay, 24.3% strains were aerobactin producers, while 43.2% were positive in the bio-assay. All the aerobactin producers carried the aerobactin receptor on their surface. Attempts to correlate siderophore production with growth in minimal and iron-depleted medium showed that there was a positive quantitative correlation between enterochelin production and growth of organisms under iron depletion. Aerobactin production failed to give an additional advantage of growth to strains producing enterochelin.  相似文献   

11.
The functional interchangeability of staphylococcal and enterobacterial iron chelators was investigated with an indicator system in which minimally effective concentrations of ethylene diamine di-ortho-hydroxyphenyl acetic acid (EDDA) were used to inhibit the growth of indicator strains in the depth of simple agar media by making the iron unavailable. Test colonies were then applied to the surface of the media to determine whether the indicator organisms, by utilising chelators from the test colony could obtain the required iron for growth, in its vicinity.Approximately 50% of staphylococcal strains, both S. aureus and S. epidermidis, reversed the inhibition of enterobacterial indicators, whereas almost all enterobacterial test strains, representing five genera, reversed the inhibition of the staphylococcal indicators. A purified preparation of the enterobacterial iron chelator enterochelin also reversed the inhibition of four out of the five staphylococcal indicator strains.  相似文献   

12.
Iron uptake in pseudorevertants of Escherichia coli K-12 strains which lack the ability to synthesize enterochelin, 2,3-dihydroxybenzoate, and the ferrienterochelin receptor protein was characterized. In four independent pseudorevertants, the suppressor mutations which permitted growth in iron-poor environments appeared to be located in ompB, the regulatory locus for the porin proteins. Unlike wild-type cells, the pseudorevertants were unable to utilize ferrienterochelin and could acquire iron from citrate without induction by prior growth in citrate. The energy requirements of the pseudorevertant system appeared to be identical to those of the enterochelin system. Evidence that loss of the porin proteins results in the secretion by the pseudorevertants of a molecule with siderophore activity is presented; this siderophore is able to remove iron from the non-biological iron chelators nitrilotriacetic acid and , -dipyridyl but not from the siderophores ferrichrome and enterochelin.  相似文献   

13.
Colicin B: mode of action and inhibition by enterochelin   总被引:27,自引:19,他引:8  
Adsorption of colicin B to a sensitive strain of Escherichia coli results in rapid cessation of deoxyribonucleic acid, ribonucleic acid, and protein synthesis. Some classes of mutants insensitive to colicin B hyperexcrete a colicin inhibitor into their growth medium. This inhibitor functions by preventing adsorption of colicin B and does not rescue cells to which colicin has already adsorbed. The inhibitor is insensitive to nucleases, proteolytic enzymes, and lysozyme and is not extracted into organic solvents. The inhibitory material has a low molecular weight, which rules out identification as lipopolysaccharide, although purified lipopolysaccharide has some inhibitory activity. Evidence is presented that the inhibitor is enterochelin, an iron chelator which is the cyclic trimer of 2,3-dihydroxybenzoylserine. Enterochelin does not inhibit colicin M, a colicin that is produced by many strains colicinogenic for colicin B.  相似文献   

14.
Abstract One important factor contributing to the virulence of Pseudomonas aeruginosa is its ability to acquire transferrin-bound iron. This is achieved by means of endogenous iron transporting compounds. The organism can also use the enterobacterial iron transporting compound, enterochelin. The scandium complex of enterochelin induces bacteriostasis of P. aeruginosa in serum and also exerts a therapeutic effect on P. aeruginosa infections in mice.  相似文献   

15.
Two high-affinity iron uptake systems are known in Salmonella typhimurium, one utilizing iron-enterochelin and the other utilizing ferrichrome. It has been shown previously that expression of several elements of the iron-enterochelin uptake system are regulated by the iron content of the medium, with growth in high-iron medium resulting in repression of enzymes of enterochelin synthesis and degradation and of the ability of whole cells to take up iron-enterochelin. In this study we describe a mutant strain in which growth in high-iron medium was associated with constitutive expression of: (i) iron-enterochelin uptake by whole cells; (ii) ferrichrome uptake by whole cells; (iii) synthesis of enterochelin; (iv) intracellular degradation of iron-enterochelin; and (v) synthesis of three major outer membrane proteins (OM1, OM2, and OM3). In contrast, in the wild-type strain these properties were expressed only after growth in iron-deficient medium. It is proposed that the mutation affects a gene responsible for regulating expression of the structural genes for the components of the high-affinity iron uptake systems. The term fur, for iron (Fe) uptake regulation, is suggested for this new class of mutant.  相似文献   

16.
The biosynthesis of the low-molecular-weight iron carrier enterochelin and of three outer membrane polypeptides appears to be coordinately regulated by the amount of cell-associated iron in Escherichia coli K-12. Measurements of iron acquisition made throughout the growth cycle in iron-deficient media indicate that a very rapid accumulation of iron occurs in the first 2 h of growth; there is comparatively little iron uptake during exponential growth, which results in a gradual decrease in the cellular iron content with each generation. When this level falls below 400 ng of iron per mg (dry weight) of cells, there is a simultaneous onset of synthesis of the three outer membrane polypeptides and of enterochelin. This coordinate regulation was also observed in cells able to transport iron actively using only citrate as an iron-carrier.  相似文献   

17.
Enterochelin, the iron chelator produced by a number of pathogenic enterobacteria, appears to be an essential metabolite for multiplication within the host, where it transports iron from the host iron-binding proteins to the bacteria. Previous work showed that complexes of enterochelin containing either scandium (Sc3+) or indium (In3+) exerted a bacteriostatic effect on Klebsiella pneumoniae in serum, whilst the Sc3+ complex exerted a significant therapeutic effect on mice infected with K. pneumoniae. These observations have now been extended to a number of pathogenic serotypes of Escherichia coli including those carrying either the K1 antigen or the ColV plasmid. The Sc3+ and In3+ complexes each exert a bacteriostatic effect on these organisms growing in either whole serum or media containing an iron-binding protein. Evidence is presented that the Sc3+ complex may act as a competitive inhibitor of the Fe3+ complex. In contrast to their effects on K. pneumoniae, sideramines other than enterochelin fail to reverse the bacteriostatic effect of the Sc3+ complex of enterochelin in E. coli, suggesting that the complex produces a more profound derangement of metabolism in this organism. The Sc3+ complex exerts a significant therapeutic effect on E. coli infections in mice although the In3+ complex is less active.  相似文献   

18.
Escherichia coli incorporates iron as a complex with enterochelin. By using mutants which lack one or the other, or both, of the outer membrane proteins, O-2b and O-3, we have shown that protein O-2b (feuB protein) is responsible for the primary binding of the iron-enterochelin complex to the outer membrane in the process of iron transport.  相似文献   

19.
Summary The lac genes were inserted with phage Mu(Ap, lac) into the fhuA, fepA, cir and tonB genes which specify components of iron uptake systems. The expression of lac in all these operon fusions was controlled by the availability of iron to the cells, thereby facilitating a quick and simple measurement of the expression of the genes listed above. In an iron rich medium under anaerobic conditions all systems were strongly repressed. fhuA was depressed at higher iron concentration than was fepA or cir, and tonB was repressed only under anaerobic conditions and could be induced by iron limitation.Mutants constitutive for the expression of -galactosidase were selected in a fhuA-lac fusion strain. The outer membrane proteins Cir, FhuA, FecA, 76K and 83K were made constitutively in such mutant strains. Therefore, they were termed fur mutants. In these fur mutant strains, the synthesis of a 19K protein was reduced. Furthermore, it was found that transport of ferric enterochelin and ferrichrome was also constitutive in the fur mutant cells, and that ferric citrate uptake could be induced by only 10 M citrate in the growth medium in contrast to wild-type cells in which at least 100 M citrate was necessary. The fepA gene was concluded to be under an additional control, because it was not fully derepressed by the fur mutation.  相似文献   

20.
Late-exponential-phasePenicillium chrysogenum mycelia grown in a complex medium possessed an intracellular iron concentration of 650 μmol/L (2.2±0.6 μmol per g mycelial dry mass). This iron reserve was sufficient to ensure growth and antibiotic production after transferring mycelia into a defined low-iron minimal medium. Although the addition of Fe3+ to the Fe-limited cultures increased significantly the intracellular iron levels the surplus iron did not influence the production of penicillin V. Supplements of purified majorP. chrysogenum siderophores (coprogen and ferrichrome) into the fermentation media did not affect the β-lactam production and intracellular iron level. Neither 150 nor 300 μmol/L extracellular Fe3+ concentrations disturbed the glutathione metabolism of the fungus, and increased the oxidative stress caused by 700 mmol/L H2O2. Nevertheless, when iron was applied in the FeII oxidation state the oxidative cell injuries caused by the peroxide were significantly enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号