首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文报导了天冬酰胺酶及PEG_2-天冬酰胺酶对废物L-天冬酰胺、谷氨酰胺亲和性的研究,结果表明:PEG_2-天冬酰胺酶对谷氨酰胺的亲和性明显强于天冬酰胺酶(Km值分别为7.35×10~(-3)mol/L和7.14×10~(-2)mol/L),对天冬酰胺的亲和性略强于天冬酰胺酶(Km值分别为2.9×10~(-5)mol/L和4.0×10~(-5)mol/L)。天冬酰胺酶和PEG_2-天冬酰胺酶的CD光谱表明:天冬酰胺和谷氨酰胺对天冬酰胺酶和PEG_2-天冬酰胺酶的构象影响较大,但天冬酰胺酶和PEG_2-天冬酰胺酶的构象变化趋势有明显的不同。  相似文献   

2.
以离心换液的批培养为例,通过设计谷氨酰胺和天冬酰胺不同的添加方式来考察两者对CHO细胞生长,代谢及产物表达的影响。结果表明:基础培养基中谷氨酰胺和天冬酰胺不能简单地相互替换,缺失谷氨酰胺或天冬酰胺的基础培养基均不能支持dhfr-CHO细胞的正常生长和产物表达,仅谷氨酰胺和天冬酰胺的浓度同时达到4mmol/L,才能满足细胞生长所需。另外,代谢副产物氨的生成仅与谷氨酰胺和天冬酰胺的加和线性相关,与两者添加比例无关。但适当提高天冬酰胺与谷氨酰胺的比例可提高抗体表达水平,同时减少乳酸的生成。因此,为培养基开发与优化过程中谷氨酰胺和天冬酰胺的添加策略提供了依据,为建立高效的流加培养过程奠定了基础。  相似文献   

3.
The glutamine transporter SLC38A3 (SNAT3) plays an important role in the release of glutamine from brain astrocytes and the uptake of glutamine into hepatocytes. It is related to the vesicular GABA (γ-aminobutyric acid) transporter and the SLC36 family of proton-amino acid cotransporters. The transporter carries out electroneutral Na+-glutamine cotransport-H+ antiport. In addition, substrate-induced uncoupled cation currents are observed. Mutation of asparagine 76 to glutamine or histidine in predicted transmembrane helix 1 abolished all substrate-induced currents. Mutation of asparagine 76 to aspartate rendered the transporter Na+-independent and resulted in a gain of a large substrate-induced chloride conductance in the absence of Na+. Thus, a single residue is critical for coupled and uncoupled ion flows in the glutamine transporter SNAT3. Homology modeling of SNAT3 along the structure of the related benzyl-hydantoin permease from Microbacterium liquefaciens reveals that Asn-76 is likely to be located in the center of the membrane close to the translocation pore and forms part of the predicted Na+ -binding site.The amino acid and auxin permease superfamily comprises a wide variety of transport proteins. In mammals, three distinct solute carrier families (SLC) belong to this superfamily, namely SLC32, SLC36, and SLC38 (1). Despite belonging to the same superfamily, the three solute carrier families have different transport mechanisms. The SLC32 family has only one member, the vesicular inhibitory amino acid transporter, which supposedly carries out a H+-GABA (γ-aminobutyric acid) antiport (2). The SLC36 family comprises four members, two of which have been characterized in more detail. These are the proton amino acid cotransporters 1 and 2 (PAT1 and 2) that carry out glycine and proline uptake in kidney and intestine and are mutated in iminoglycinuria (3, 4). The SLC38 family is comprised of 11 members, 5 of which have been characterized in more detail (5). Two different transport mechanisms are found within this family, namely the Na+-amino acid cotransporters SNAT1, SNAT2, and SNAT4 and the Na+-amino acid cotransporters-H+-antiporters SNAT3 and SNAT5. Transporters of the superfamily play a key role in inhibitory and excitatory neurotransmission, metabolite absorption, and liver metabolism. Despite their important roles in mammalian physiology, relatively little is known about the structure and function of these transporters.The activity of ion-coupled membrane transporters is frequently associated with currents which de- or hyperpolarize the cell membrane. These currents may be due to electrogenic transport stoichiometry and/or to a non-stoichiometric ion conductance (6). Transport-associated ion conductances have been identified in a number of transporters but have been particularly well studied in several Na+-coupled neurotransmitter transporters (711). Transport-associated conductances have also been observed in electroneutral transporters that do not carry out net charge movement (8, 1215). The glutamine transporter SNAT3, for instance, has a transport mechanism in which glutamine uptake is coupled to the cotransport of 1Na+ and the antiport of 1H+ and, hence, is unaffected by changes of the membrane potential (13, 16). Despite the electroneutral transport mechanism, substrate uptake is accompanied by inward currents, which are carried by cations below pH 7 and by protons at alkaline pH. In addition, a substrate-independent cation conductance and a Na+/H+ exchange activity has been observed (17). Non-stoichiometric currents can be mediated by the same ions that are involved in the coupled transport process, such as in the case of SNAT3, but may also be carried by different ions. Stoichiometric glutamate transport, for instance, involves Na+, H+, and K+ ions, whereas the glutamate transport-associated conductance is carried by chloride (18).A crucial question concerning transporter-associated ion conductances is whether the conducting pore coincides with the translocation pathway of the substrate and whether both use the same critical residues. In the case of the glutamate transporters, evidence has been presented suggesting that different residues are critical for the anion conductance than for substrate transport (19, 20) but that they all line the same pathway (21). Here we show that asparagine 76 of SNAT3 is critical for substrate-induced ion conductance and affects binding of the cosubstrate Na+. In addition we show that this residue is likely to be localized in the translocation pore in the center of the membrane.  相似文献   

4.
Plasmodium falciparum is the causative agent of the most severe form of malaria in humans. The merozoite, an extracellular stage of the parasite lifecycle, invades erythrocytes in which they develop. The most abundant protein on the surface of merozoites is merozoite surface protein 1 (MSP1), which consists of four processed fragments. Studies indicate that MSP1 interacts with other peripheral merozoite surface proteins to form a large complex. Successful invasion of merozoites into host erythrocytes is dependent on this protein complex; however, the identity of all components and its function remain largely unknown. We have shown that the peripheral merozoite surface proteins MSPDBL1 and MSPDBL2 are part of the large MSP1 complex. Using surface plasmon resonance, we determined the binding affinities of MSPDBL1 and MSPDBL2 to MSP1 to be in the range of 2–4 × 10−7 m. Both proteins bound to three of the four proteolytically cleaved fragments of MSP1 (p42, p38, and p83). In addition, MSPDBL1 and MSPDBL2, but not MSP1, bound directly to human erythrocytes. This demonstrates that the MSP1 complex acts as a platform for display of MSPDBL1 and MSPDBL2 on the merozoite surface for binding to receptors on the erythrocyte and invasion.  相似文献   

5.
Isolated rat brain synaptosomes accumulated L-asparagine with a Km value of 348 microM and a Vmax value of 3.7 nmol/mg of protein/min at 28 degrees C. Uptake of L-asparagine was inhibited by the presence of L-glutamine, whereas transport of L-glutamine was blocked by L-asparagine. Alanine, serine, cysteine, threonine, and, in particular, leucine were also inhibitory whereas alpha-(methylamino)isobutyrate, ornithine, lysine, arginine, and glutamate were much less effective blockers. Transport of L-asparagine had a substantial sodium-dependent component, whereas that of the D-stereoisomer was almost unaffected by the presence or absence of the cation. L-Asparagine was accumulated to a maximal gradient, [L-Asn]i/[L-Asn]o, of 20-30, and this value was reduced to 5-6 by withdrawal of sodium or addition of high [KCI]. A plot of log [Na+]o/[Na+]i against the log [L-Asn]i/[L-Asn]o had a slope close to I, which indicates that a single sodium ion is transported inward with each asparagine molecule. It is postulated that uptake of L-asparagine occurs, to a large extent, in cotransport with Na+ and that it utilizes the sodium chemical gradient and the membrane electrical potential as the source of energy. The similarity between the L-asparagine and L-glutamine transport systems and the reciprocal inhibition of influx of the two amino acids suggest that the same mechanism is responsible for glutamine accumulation. This could explain the high [Gln]i maintained by the brain in vivo.  相似文献   

6.
Synopsis. Trypanosoma congolense Broden, an intravascular parasite, binds to vessel walls and erythrocytes of infected hosts. In an attempt to characterize T. congolense adhesion to host cells, an in vitro assay was devised. It was shown in the in vitro experiments that T. congolense binds to bovine, sheep, and goat erythrocytes, but not always to erythrocytes of rats, mice, rabbits, horses or humans. Only the anterior part of live trypanosomes adheres to erythrocytes, and the attachment site on the trypanosomes is destroyed by trypsin and chymotrypsin. Trypanosomes did not adhere to bovine erythrocytes that had been incubated with neuraminidase, sodium periodate and poly-L-lysine. The foregoing experiments suggest that the surface of T. congolense contains a protein-associated site which binds to sialic acid of some host cells. This surface site is most likely responsible for attachment to blood vessels in vivo.  相似文献   

7.
A relatively simple and rapid procedure for the measurement of free ammonium and the amides in plant extracts is described. The method was developed by combining a cation-exchange method for blood ammonia with a differential acid-hydrolysis procedure for asparagine and glutamine amide-nitrogen.The recovery of standard samples (100-400 mug of ammonium- or amide-nitrogen) of free ammonium, asparagine, and glutamine after being run through the extraction, column, and analytical procedures ranged between 99 and 102%.The harvest, extraction, and analytical procedures were tested on shoots from 4 to 6-day-old germinating barley seeds. The high levels of the amides and the low level of free ammonium present in the tissue extracts indicated that the extraction and analytical procedures resulted in little if any hydrolysis of the amides.  相似文献   

8.
Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of α1β1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain β1(1–385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (β1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat β1 distal heme pocket (Ile-145 → Tyr and Ile-149 → Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin FeII-O2 complexes and is likely the first observation of a FeII-O2 complex in the full-length α1β1 protein. Additionally, these data suggest that atypical sGCs stabilize O2 binding by a hydrogen bonding network involving tyrosine and glutamine.  相似文献   

9.
10.
System y+L is a broad-scope amino acid transporter which binds and translocates cationic and neutral amino acids. Na+ replacement with K+ does not affect lysine transport, but markedly decreases the affinity of the transporter for l-leucine and l-glutamine. This observation suggests that the specificity of system y+L varies depending on the ionic composition of the medium. Here we have studied the interaction of the carrier with various amino acids in the presence of Na+, K+, Li+ and guanidinium ion. In agreement with the prediction, the specificity of system y+L was altered by the monovalent cations. In the presence of Na+, l-leucine was the neutral amino acid that interacted more powerfully. Elongation of the side chain (glycine - l-norleucine) strengthened binding. In contrast, bulkiness at the level of the β carbon was detrimental. In K+, the carrier behaved as a cationic amino acid specific carrier, interacting weakly with neutral amino acids. Li+ was found to potentiate neutral amino acid binding and in general the apparent affinities were higher than in Na+; elongation of the nonpolar side chain made a more important contribution to binding and the carrier was more tolerant towards β carbon substitution. Guanidinium stimulated the interaction of the carrier with neutral amino acids, but the effect was restricted to certain analogues (e.g., l-leucine, l-glutamine, l-methionine). Thus, in the presence of guanidinium, the carrier discriminates sharply among different neutral amino acids. The results suggest that the monovalent cations stabilize different carrier conformations. Received: 22 January 1996/Revised: 26 April 1996  相似文献   

11.
Sivasankar S  Oaks A 《Plant physiology》1995,107(4):1225-1231
Growth systems that either permit (wet system) or prevent (dry system) the hydrolysis of endosperm reserves in maize (Zea mays) seedlings were developed to study the effect of endosperm reserves on the acquisition of external nitrogen. Three-day-old seedlings treated with 5 mM KNO3 for 24 h had higher levels of nitrate reductase (NR) activity and protein in shoot and root tissues in the dry relative to the wet system. This suggests that the induction of NR is sensitive to products of hydrolysis of endosperm reserves. Asparagine (1 mM) or glutamine (1 mM), potential products of that hydrolysis, inhibited the induction of NADH-dependent root NR in the dry system by about 70%. The inhibition of the induction of NR activity in the wet system was only about 35%, suggesting that the enzyme in the wet system was already partially repressed at 3 d. At 5 d, when asparagine and glutamine levels in the plant tissue had decreased, the induction of root NR activity was inhibited to a similar extent in the two growth systems by amide additions. The shoot enzyme was less sensitive to amide additions, and 10 mM concentrations of either amide was required for a 65% inhibition.  相似文献   

12.
A simple, reproducible method for the large-scale purification of active ubiquitin from human erythrocytes is described. Erythrocytes contain 100 μg free ubiquitin per cc of packed cells, of which 44% can be recovered in homogeneous form by a combination of heat treatment, ammonium sulfate fractionation, and ion exchange chromatography.  相似文献   

13.
14.
The effect of activated oxygen species on human hemoglobins was studied. All radicals induced polymerization in Hb A both intermolecular and by cross-linking of subunits (intramolecular). However, a system producing mainly superoxide ion gave the most important changes. An oxidation step is necessary to produce polymerization since in the case of cyanmet Hb A (where there is no possible oxidation) no polymerization occurs. The effect of O-2 on blocked SH β 93 Hbs or on the abnormal Hbs tested was practically identical to that on Hb A although their autoxidation rates were modified. Consequently the action of radicals is different from autoxidation processes and the modified residues in the abnormal hemoglobins are not involved in the action of superoxide ion on Hb.

The kinetics of oxidation of Hb by H2O2 followed two steps: the first is the oxidation of oxy Hb to ferri Hb and the second is hemichrome formation. This last step is independent of the presence of H2O2 since it is not inhibited by catalase. The kinetics of oxidation to ferri Hb were of second order and the rate constant was found to be 16 M-1 sec-1.  相似文献   

15.
目的:表达优化的血管内皮细胞生长因子(VEGF)受体1(VEGFR1)胞外区第2个类免疫球蛋白结构域(VEGFR1D2)和VEGF受体2(VEGFR2)胞外区第3个类免疫球蛋白结构域(VEGFR2D3)与人IgG1 Fc片段的融合产物VEGF-Trap2,探讨该产物与人源VEGF165(hVEGF165)之间的亲和力。方法:将优化的目的基因VEGFR1D2/R2D3连接到真核表达载体pIRES2-EGFP-Fc中,转染CHO-K1细胞并筛选高表达目的蛋白VEGF-Trap2的细胞系,亲和纯化VEGF-Trap2蛋白,通过非竞争性ELISA及生物膜干涉技术检测VEGF-Trap2与hVEGF165之间的亲和力。结果:DNA测序表明真核表达载体pIRES2-EGFP-VEGF-Trap2序列正确;获得表达VEGF-Trap2的细胞系;非竞争性ELISA实验中,VEGF-Trap2与hVEGF165功能性亲和常数达到1.86×107L/mol;生物膜干涉实验中,hVEGF165与VEGF-Trap2的平衡解离常数达到3.13×10-9mol/L。结论:构建了真核表达载体pIRES2-EGFP-VEGF-Trap2并在CHO-K1细胞中稳定表达,重组蛋白VEGF-Trap2与hVEGF165有较高的亲和力,提示其可用于阻断VEGF信号传导途径,为该蛋白进一步的体外及体内实验奠定了基础。  相似文献   

16.
The yeast YCC5 gene encodes a putative amino acid permease and is homologous to GNP1 (encoding a high-affinity glutamine permease). Using strains with disruptions in the genes for multiple permeases, we demonstrated that Ycc5 (which we have renamed Agp1) is involved in the transport of asparagine and glutamine, performed a kinetic analysis of this activity, and showed that AGP1 expression is subject to nitrogen repression.  相似文献   

17.
18.
可溶性尿激酶受体的表达、纯化和结晶   总被引:2,自引:0,他引:2  
克隆尿激酶受体可溶区域(suPAR)到果蝇胚胎细胞分泌表达载体pMT/Bip/v5-his,重组质粒与pCoHygro共转染果蝇S2细胞,筛选多拷贝稳定表达细胞系suPARS2.suPAR表达蛋白经尿激酶N端片段亲和柱、ResourceQ阴离子交换柱两步纯化后,得到高纯度的、稳定的suPAR单体.纯化后的蛋白质,与其抗体ATN615及尿激酶N端片段结构域等摩尔混合,浓缩至10g/L,以透析法进行该三元复合物晶体生长,获得衍射分辨率为1.9#的蛋白质晶体.  相似文献   

19.
Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.  相似文献   

20.
BCMA是除TACI外BAFF和APRIL共用的另一细胞表面受体。为了研究sBCMA作为拮抗受体的可能及获得活性sBCMA蛋白用做结构功能研究,我们以RTPCR法从人B系非洲淋巴瘤细胞株Raji总RNA中扩增出人BCMA的全长cDNA,经克隆测序证实所克隆的基因为人BCMA。继而通过嵌套PCR扩增出胞外可溶区(sBCMA,46个氨基酸组成,含有一个6个半胱氨酸的保守CRD,构成3个二硫键)cDNA,构建原核表达载体pET43.1a( )sBCMA,在大肠杆菌菌株OrigamiB(DE3)pLysS中高可溶性融合表达出重组蛋白sBCMANusAHis6,同时克隆表达了融合蛋白NusAHis6。经Ni NTA亲和纯化后的目的蛋白进行细胞学实验表明sBCMA能特异阻断BAFF促小鼠B细胞的增殖作用,而NusAHis6则不能,证实我们所表达得到的受体胞外可溶性片段sBCMA与配体具有较高的结合活性。sBCMA融合蛋白的成功表达将为二硫键富含类蛋白的表达提供参考,并为研究其临床应用以及BAFF和APRIL受体结构和功能的关系奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号