首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sedimentation coefficients of three proteins, which appeared homogeneous in the ultracentrifuge, have been determined at different rotor velocities. Two of the proteins, ovalbumin and human gamma-globulin, showed sedimentation coefficients that were approx. 10% higher at rotor velocities below 20000rev./min. than at 56100rev./min. The third protein, haemocyanin of Jasus lalandii, could not be investigated over the same rotor-velocity range, but it showed a similar effect.  相似文献   

2.
Sedimentation-coefficient measurements on human IgG, fibrinogen and alpha(2)-macroglobulin and pig thyroglobulin were made at rotor velocities of 15220-59780 rev./min and 25.0 degrees C in capillary-type synthetic-boundary cells or ordinary cells. At the lowest velocity, IgG and fibrinogen gave results several per cent higher than at other velocities, whereas alpha(2)-macroglobulin and thyroglobulin gave values only about 1.5% higher. This behaviour of IgG and fibrinogen is attributed primarily to imperfect initial boundaries.  相似文献   

3.
The alginate production by Azotobacter vinelandii, as well as the molecular weight of the polymer, are strongly influenced by the dissolved oxygen tension (DOT) and stirring speed of the culture. Under high DOT (5% of air saturation), the bacteria produced more alginate (4.5 g/l) than that obtained at low (0.5%) oxygen tension (1.0 g/l) in cultures conducted at 300 rpm. On the other hand, under constant DOT (3%), the higher the stirring speed (from 300 to 700 rev./min), the higher the specific growth rate and the alginate production rate. However, low agitation speed (300 rev./min) lead the culture to produce a polymer of high molecular weight (680 000 g/g mol) whereas a low molecular weight (352 000 g/g mol) alginate was isolated from cultures conducted at high (700 rev./min) stirring speed. At 700 rev./min, the MMW increased to a plateau between 1 and 3% DOT and then decreased to a minimum of 0.11 x 10(6) g/g mol at 7%. Microscopic observations revealed the presence of cell aggregates (one order of magnitude larger than individual cells) when the culture was conducted at 300 rev./min. Oxygen gradients occurring within the aggregates could be responsible of this phenomenon. At high agitation rate, the MMW of the alginate dropped towards the end of the culture in all conditions evaluated. Alginase activity was detected, which would be responsible for this phenomenon.  相似文献   

4.
A combined mitochondrial and light mitochondrial fraction and a microsomal fraction were isolated from bovine thyroid gland and fractionated further in a B-XIV zonal rotor. A density gradient ranging from 20 to 50% (w/w) sucrose was used. The rotor was operated for 3 h at 45 000 rev./min. All manipulations were performed at 4 degrees C and at pH 7.4. 2. Membranous material was recovered in two zones: zone I, containing microsomal material derived from both smooth endoplasmic reticulum and plasma membranes and probably also from other smooth membranes; zone II, containing material from rough endoplasmic reticulum. 3. Increasing the pH of the medium up to 8.6, or the addition of Mg2+ to the medium resulted in the formation of a single zone at intermediate densities (aggregation of membranes?). An analogous effect was obtained after treatment with Pb (NO3) 2. 4. In the presence of heparin (50 i.u./ml) the bulk of the membranes was found in zone I. This was due to the release of ribosomes from the rough endoplasmic reticulum.  相似文献   

5.
—A method is described for detecting myelin in small amounts of tissue by density criteria. Samples are homogenized in 0.926 m -CsCl, 10 mm -Tris-HCl, (pH 7.4), 5 mm -Ca2+ solution and centrifuged to equilibrium at 52,000 rev./min and 4°C in the AN-F rotor of the Model E analytical ultracentrifuge. Homogenates of white matter show a band of material in the density range of 1.20–1.130 g/ml, whereas gray matter homogenates do not show a band of material in this density region. A preparative method is described for isolating the material banding in the region of 1.120–1.130 g/ml from optic nerve homogenates of 21-day old rats. This material has (1) a protein content of 22–24%, (2) an enzymatic activity for 2′,3′-cyclic nucleotide phosphohydrolase of 13.1 μmol/min per mg protein and (3) a phospholipid-cholesterol-galactolipid molar ratio of 100:100:48. Plasmalogen accounted for 22% of the phospholipid, and sulfatide accounted for 31% of the galactolipid. This material is 85% soluble in chloroform:methanol (2:1. v:v). Developmental studies indicate that this myelin material can first be detected in the optic nerve from an 11-day-old rat.  相似文献   

6.
An optimized batch production of Bacillus thuringiensis subsp. israelensis was made in a stirred Bioflo III reactor using a previously selected medium, and operating conditions in the range of 100–500 rev/min stirrer speeds and 0.2–1 air flow/culture medium volume/minute (v/v/m) aeration rates, including five combinations; at the end of fermentation, dry powders were recovered and evaluated against Aedes aegypti larvae at 0.05 mg/l. Later, the lethal concentration inducing 50% mortality (LC50) was determined for the two most toxic powders. The bioinsecticide yields varied from 9.1 to 15.7 g/l and the total fermentation times ranged between 18 and 30.3 h. The toxicity varied for two powders much more than for the others. These were for combinations with 300 rev/min:1 v/v/m and 500 rev/min:0.6 v/v/m, giving mortality percentages of 47.2 and 59.7, with LC50 values of 0.2675 and 0.0685 mg/l, respectively. A t test showed no significant difference. However, the larvicidal powder produced with 300 rev/min:1 v/v/m gave more variable toxicity than the powder obtained with 500 rev/min:0.6 v/v/m.  相似文献   

7.
A very short run time and small sample volumes in the separation of lipoproteins by preparative ultracentrifugation are needed for several investigations. Recently, a very fast sequential separation method was described that needs only 100 min for one run in a centrifugal field of 625 000 × g. We studied the influence of centrifugal fields of this dimension on lipoprotein separation and lipoprotein particle integrity using a Beckman OptimaTM TLX ultracentrifuge with a TLA-120.2 rotor. Rotor speed (120/90/60/30 · 103 rev./min) and run time (100 min/3 h/6.7 h/27 h) were selected in such a way that the product of centrifugal field and run time remained constant. The first conditions correspond to the very fast ultracentrifugation (VFU) procedure with a centrifugal field of 625 000 × g. Thirty different plasma samples covering a wide range of lipid and protein concentrations were separated in the course of two centrifugal runs at densities of 1.006 and 1.063 kg/l which yielded very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL), and the subnatant of low-density lipoproteins, including high-density lipoproteins (HDL) and concomitant sedimented plasma proteins. The major lipid components of the lipoproteins, triacylglycerols, free and esterified cholesterol, phospholipids and the apolipoproteins B and A-I, were estimated considering the masses of the tube contents after a slicing procedure. Measurements of lipids and proteins showed a very good recovery of better than 94% and 91%, respectively, and precision-within-series (coefficient of variation) of better than 4.2% and 6.5%, respectively. The effects of the rotor speed on the lipoprotein structure appeared to be weak. With increasing rotor speed, VLDL and LDL lipid constituents principally tended to decrease, whereas they increased in the subnatant of the LDL-run. The mean lipoprotein mass composition, considering the mass percentage of each measured particle constituent, did not show significant alterations. Total protein decreased in VLDL and in LDL and increased in the subnatant of the LDL-run. As checked by an enzyme-linked immunosorbent assay (ELISA) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein effects were due to nearly complete disappearence of contaminating plasma proteins, especially albumin as the major contamination of VLDL and LDL. The apolipoproteins (apo) B-100, A-I, E and C-I to C-III remained nearly unaffected. The main advantages of VFU were the very short run time (cumulative flotation time is 3.4 h) and the elimination of albumin without repeated runs. The procedure was suitable for the assessment of lipid and protein constituents in lipoproteins from very small plasma samples (500 μl).  相似文献   

8.
Separation of yeast cells using a co-flocculation process was investigated. Co-flocculation is a fast process (within few minutes), occurs in a broad pH range (3.0–8.0) and requires a small amount of calcium (0.1 mM). Agitation affects yeast aggregation; however, an agitation between 60 rev/min and 160 rev/min has only a little influence on the co-flocculation process. The ratio flocculent/non-flocculent cells that induced the settling of 50 and 90% of the cells of S. cerevisiae was 1:7 and 1:1, respectively. Separation of non-flocculent cells can be carried out at any time of the growth cycle. No difference in the efficiency of co-flocculation carried out in buffer (pH 4.0 with 10 mM calcium) or in 48 h-fermented broth was observed. Flocculent cells of Saccharomyces cerevisiae had the ability to sediment non-flocculent cells of S. cerevisiae and Kluyveromyces marxianus, which shows the suitability of the co-flocculation process for separation of different kinds of non-flocculent cells.  相似文献   

9.
Summary To simplify the isolation of neutrophils, we developed a one-step procedure using elutriation. The perfusate (0.2% gelatin and 0.1% glucose in phosphate buffered saline) was pumped through an elutriator rotor at 4 ml/min (25° C) with the rotor speed at 2370 rpm. Twenty milliliters of anticoagulated porcine venous blood were mixed with 60 ml of perfusate and loaded into the elutriator chamber. The flow rate was increased by 2 ml/min increments and 100-ml fractions of effluent were collected at each increment. Concentrations of neutrophils and mononuclear cells were measured in each fraction, and the percentage of total neutrophils or mononuclear cells was plotted against flow rate. The optimal yield (46%) and purity (95.1%) of neutrophils (n=8) was obtained in pooled fractions at flow rates greater than 20 ml/min. Neutrophils in this preparation were round, the granules were intact, and the nuclei were lobulated. In addition, the cells produced superoxide in the presence of phorbol myristate acetate and phagocytosed zymosan particles. These characteristics were similar to those of porcine neutrophils prepared by a conventional sedimentation method. The yield (43%) and purity (94%) of human neutrophils isolated using the elutriator method was similar to that for porcine cells. This one-step method provides a moderate yield of pure neutrophils that have retained their morphology and function. This work was supported by the Canadian Heart Foundation.  相似文献   

10.
Conditions for the production of thermostable proteases (alkaline proteinase and carboxypeptidase) by a thermophilic streptomycete (Streptomyces rectus var. proteolyticus) were investigated in 20-liter volumes. Proteinase production was affected by the concentration of defatted soybean powder, its optimum being 1.2% in medium containing 2.0% soluble starch. Relatively high concentration of phosphate (0.3 to 0.4% K(2)HPO(4)) was needed for the maximum enzyme production. A large inoculum size (5 to 10%) was favorable, but the inoculum age did not significantly influence the production. The yield increase of 20 to 30% was obtained by feeding of medium during fermentation. The optimal temperature for proteinase production was 50 C, at which the maximal rate of production was 66.2 proteinase units per ml per hr, whereas at 40 C it was 9.0. Production at 50 C reached the maximum within 12 to 16 hr. The optimal agitation rate was different for the production of proteinase and carboxypeptidase, 400 rev/min for the former and 500 rev/min for the latter. The optimal aeration for proteinase production was 20 to 30 liters/min at 400 rev/min, whereas carboxypeptidase production was not markedly affected by aeration rate. The possibility that carboxypeptidase production was correlated with the shear of mycelium was discussed.  相似文献   

11.
Induction of forward mutations in mutationally defective yeast   总被引:5,自引:0,他引:5  
Summary The 3 rev loci that reduce ultraviolet light (UV)-induced reversion in S. cerevisiae had a similar effect on forward mutation to auxotrophy induced by a single 400 erg/mm2 UV dose: rev1-1, rev2-1 and rev3-1 reduced average frequencies of auxotrophs to 4%, 64% and 4% that in wild type and reduced frequencies of mutants at ade1 or ade2 to 19%, 88% and 2% wild type, respectively. The rev2-1 strain exhibited high frequencies of spontaneous mutation. It is suggested that rev1-1 and rev3-1 block steps in a general UV mutation mechanism controlling forward and reverse mutation throughout the genome. The small effect of rev2-1, compared to the effect of rev1-1 or rev3-1, is consistent with previously obtained data on UV reversion and could be due to a specificity for induced mutation involving only certain types of UV damage or, on the other hand, it may be related to mutator activity. Although rev caused varying degrees of sensitivity to ethylmethanesulfonate (EMS), there was little or no significant effect on mutation induced by a single 30 min. dose of 3% EMS. Auxotroph frequencies were 79%, 109% and 94% wild type, whild frequencies at ade1 or ade2 were 82%, 56% and 51% wild type in the respective strains. It is suggested that steps blocked by rev, although they may participate in repair of lethal EMS damage, do not themselves generate EMS-induced mutations.  相似文献   

12.
Forces acting on symmetrically suspended wing-plates in the rotatory flow apparatus were measured at varied width and rev. min. –1 of the rotating tubes. Force plotted as function of tube diameter (or length of wing-plate) gives a sigmoid curve above 40 to 50 rev. min.–1 (called the force/length curve) while the critical rev. min. –1 for cod is about 70. Features of the force-length curve may reasonably be expected to appear in plots of critical peripheral velocity against length of fish. Of the plots from 26 samples 73% showed features which are well compatible with those of the force/length curve.  相似文献   

13.
The aim of this study was to examine the relationship between the content of various types of myosin heavy chain isoforms (MyHC) in the vastus lateralis muscle and pulmonary oxygen uptake during moderate power output incremental exercise, performed at low and at high pedalling rates. Twenty one male subjects (mean +/- SD) aged 24.1 +/- 2.8 years; body mass 72.9 +/- 7.2 kg; height 179.1 +/- 4.8 cm; BMI 22.69 +/- 1.89 kg.m(-2); VO2max 50.6 +/- 5.3 ml.kg.min(-1), participated in this study. On separate days, they performed two incremental exercise tests at 60 rev.min(-1) and at 120 rev.min(-1), until exhaustion. Gas exchange variables were measured continuously breath by breath. Blood samples were taken for measurements of plasma lactate concentration prior to the exercise test and at the end of each step of the incremental exercise. Muscle biopsies were taken from the vastus lateralis muscle, using Bergstr?m needle, and they were analysed for the content of MyHC I and MyHC II using SDS--PAGE and two groups (n=7, each) were selected: group H with the highest content of MyHC II (60.7 % +/- 10.5 %) and group L with the lowest content of MyHC II (27.6 % +/- 6.1 %). We have found that during incremental exercise at the power output between 30-120 W, performed at 60 rev.min(-1), oxygen uptake in the group H was significantly greater than in the group L (ANCOVA, p=0.003, upward shift of the intercept in VO2/power output relationship). During cycling at the same power output but at 120 rev.min(-1), the oxygen uptake was also higher in the group H, when compared to the group L (i.e. upward shift of the intercept in VO2/power output relationship, ANCOVA, p=0.002). Moreover, the increase in pedalling rate from 60 to 120 rev.min(-1) was accompanied by a significantly higher increase of oxygen cost of cycling and by a significantly higher plasma lactate concentration in subjects from group H. We concluded that the muscle mechanical efficiency, expressed by the VO2/PO ratio, during cycling in the range of power outputs 30-120 W, performed at 60 as well as 120 rev.min(-1), is significantly lower in the individuals with the highest content of MyHC II, when compared to the individuals with the lowest content of MyHC II in the vastus lateralis.  相似文献   

14.
The effect of different muscle shortening velocity was studied during cycling at a pedalling rate of 60 and 120 rev.min(-1) on the [K+]v in humans. Twenty-one healthy young men aged 22.5+/-2.2 years, body mass 72.7+/-6.4 kg, VO2 max 3.720+/-0.426 l. min(-1), performed an incremental exercise test until exhaustion. The power output increased by 30 W every 3 min, using an electrically controlled ergometer Ergoline 800 S (see Zoladz et al. J. Physiol. 488: 211-217, 1995). The test was performed twice: once at a cycling frequency of 60 rev.min(-1) (test A) and a few days later at a frequency of 120 rev. min(-1) (test B). At rest and at the end of each step (i.e. the last 15 s) antecubital venous blood samples for [K+]p were taken. Gas exchange variables were measured continuously (breath-by-breath) using Oxycon Champion Jaeger. The pre-exercise [K+]v in both tests was not significantly different amounting to 4.24+/-0.36 mmol.l(-1) in test A, and 4.37+/-0.45 mmol.l(-1) in test B. However, the [K+]p during cycling at 120 rev. min(-1) was significantly higher (p<0.001, ANOVA for repeated measurements) at each power output when compared to cycling at 60 rev.min(-1). The maximal power output reached 293+/-31 W in test A which was significantly higher (p<0.001) than in test B, which amounted to 223+/-40 W. The VO2max values in both tests reached 3.720+/-0.426 l. min(-1) vs 3.777+/-0.514 l. min(-1). These values were not significantly different. When the [K+]v was measured during incremental cycling exercise, a linear increase in [K+]v was observed in both tests. However, a significant (p<0.05) upward shift in the [K+]v and a % VO2max relationship was detected during cycling at 120 rev.min(-1). The [K+]v measured at the VO2max level in tests A and B amounted to 6.00+/-0.47 mmol.l-1 vs 6.04+/-0.41 mmol.l-1, respectively. This difference was not significant. It may thus be concluded that: a) generation of the same external mechanical power output during cycling at a pedalling rate of 120 rev.min(-1) causes significantly higher [K+]v changes than when cycling at 60 rev.min(-1), b) the increase of venous plasma potassium concentration during dynamic incremental exercise is linearly related to the metabolic cost of work expressed by the percentage of VO2max (increase as reported previously by Vollestad et al. J. Physiol. 475: 359-368, 1994), c) there is a tendency towards upward up shift in the [K+]v and % VO2max relation during cycling at 120 rev.min(-1) when compared to cycling at 60 rev.min(-1).  相似文献   

15.
In this experiment we studied the effect of different pedalling rates during cycling at a constant power output (PO) 132+/-31 W (mean+/-S.D.), corresponding to 50% VO2 max, on the oxygen uptake and the magnitude of the slow component of VO2 kinetics in humans. The PO corresponded to 50% of VO2 max, established during incremental cycling at a pedalling rate of 70 rev.min(-1). Six healthy men aged 22.2+/-2.0 years with VO2 max 3.89+/-0.92 l.min(-1), performed on separate days constant PO cycling exercise lasting 6 min at pedalling rates 40, 60, 80, 100 and 120 rev.min(-1), in random order. Antecubital blood samples for plasma lactate [La]pl and blood acid-base balance variables were taken at 1 min intervals. Oxygen uptake was determined breath-by-breath. The total net oxygen consumed throughout the 6 min cycling period at pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1) amounted to 7.727+/-1.197, 7.705+/-1.548, 8.679+/-1.262, 9.945+/-1.435 and 13.720+/-1.862 l, respectively for each pedalling rate. The VO2 during the 6 min of cycling only rose slowly by increasing the pedalling rate in the range of 40-100 rev.min(-1). This increase, was 0.142 l per 20 rev.min(-1) on the average. Plasma lactate concentration during the sixth minute of cycling changed little within this range of pedalling rates: the values were 1.83+/-0.70, 1.80+/-0.48, 2.33+/-0.88 and 2.52+/-0.33 mmol.l(-1). The values of [La]pl reached in the 6th minute of cycling were not significantly different from the pre-exercise levels. Blood pH was also not affected by the increase of pedalling rate in the range of 40-100 rev.min(-1). However, an increase of pedalling rate from 100 to 120 rev.min(-1) caused a sudden increase in the VO2 amounting to 0.747 l per 20 rev.min(-1), accompanied by a significant increase in [La]pl from 1.21+/-0.26 mmol.l(-1) in pre-exercise conditions to 5.92+/-2.46 mmol.l(-1) reached in the 6th minute of cycling (P<0.01). This was also accompanied by a significant drop of blood pH, from 7.355+/-0.039 in the pre-exercise period to 7.296+/-0.060 in the 6th minute of cycling (P < 0.01). The mechanical efficiency calculated on the basis of the net VO2 reached between the 4th and the 6th minute of cycling amounted to 26.6+/-2.7, 26.4+/-2.0, 23.4+/-3.4, 20.3+/-2.6 and 14.7+/-2.2%, respectively for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1). No significant increase in the VO2 from the 3rd to the 6th min (representing the magnitude of the slow component of VO2 kinetics) was observed at any of the pedalling rates (-0.022+/-0.056, -0.009+/-0.029, 0.012+/-0.073, 0.030+/-0.081 and 0.122+/-0.176 l.min(-1) for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1), respectively). Thus a significant increase in [La]pl and a decrease in blood pH do not play a major role in the mechanism(s) responsible for the slow component of VO2 kinetics in humans.  相似文献   

16.
Fungal growth was quantified during Indonesian rice tapé fermentation using an agar-film technique following sample homogenization for 1 min at 25000 rev/min. After 72 h fermentation, mould hyphal length was 0·68 km/g, yeast hyphal length 2·1 km/g and the numbers of mould chlamydospores and single yeast cells were 14 times 105/g and 5·1 times 107/g respectively. The estimated fungal biomass in rice tapé after 72 h was 25 mg/g dry weight with 62% of this being mould hyphae, 24% mould chlamydospores, 13% yeast hyphae and 1% yeast cells.  相似文献   

17.
18.
In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3)] concentrations. This indicates that at high pedaling rates the subjects with higher percentage of MyHC II in the vastus lateralis muscle perform relatively better than the subjects with lower percentage of MyHC II in this muscle.  相似文献   

19.
An antibody-direct epifluorescent filter technique (Ab-DEFT) detected 100% of the raw ground beef samples inoculated with Escherichia coli O157 : H7 cells (0·15 cells g−1) and incubated in a prewarmed, modified buffered peptone water (mBPW) non-selective enrichment broth for 5 h at 42°C in an orbital shaking water bath (200 rev min−1). Over 50% of the microscopic fields viewed were positive (1–10 fluorescent cells field−1) in the Ab-DEFT. All positive screening results were confirmed within 24 h by subjecting 1 ml of the mBPW to the Dynabeads® anti- E. coli O157 immunomagnetic separation procedure, followed by plating on MacConkey sorbitol agar containing 5-bromo-4-chloro-3-indolyl-β- D -glucuronide. At this cell concentration, 41·7% of the inoculated samples were detected by the conventional method involving a 24-h selective enrichment. Exposure to viable cells before filtration was minimized by using a 0·58% formaldehyde concentration for 5 min at 50°C (killed >4·00 logs of E. coli O157 : H7 cells) without affecting cell fluorescence.  相似文献   

20.
This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号