首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mouse fibroblast (L-929) cells, in culture, synthesized and secreted into the growth medium a vitamin B12-binding substance which was identical to mouse transcobalamin II (TC II) as judged by the following criteria: (i) gel filtration on Sephadex G-200, (ii) ion-exchange chromatography on DEAE-cellulose and CM-cellulose, and (iii) the ability to facilitate cellular B12 uptake by L-929 cells. The secretion of mouse fibroblast binder was blocked by cycloheximide and puromycin; and in both cases the cells' ability to secrete this binder was partially restored when the inhibitor was removed. Within 30 h after the cells were exposed to [57Co]B12 bound to mouse serum TC II (Mr ~ 38,000) the [57Co]B12 was bound to a large molecular weight intracellular binder (Mr ~ 120,000) which was not released into the culture medium. During this same incubation period, the cells released free [57Co]B12 and [57Co]B12 bound to a protein which had the same elution volume as mouse serum TC II on Sephadex G-200.  相似文献   

2.
Summary The genetic polymorphism of the vitamin B12 transport protein transcobalamin II (TC II) was studied in a Caucasian population and in families. There are five codominent alleles of TC II which show a Mendelian mode of inheritance. No genetic linkage of TC II was found with gene loci for ADA, GLOI, Pi, HLA, AB0 and AK1. TC II like proteints could be detected on autoradiograph of PAGE in two patients with congenital homozygosity for functional TC II deficiency. These vitamin B12 binding proteins in the patients' serum were shown not to be normal R-proteins.Supported in part by grants from U.S. Public Health Service, NCI CA-22507, CA-19267, CA-08748, NIAID AI-07073. A portion of this work was conducted through the Clinical Research Center Facility of the University of Washington (RR-37)  相似文献   

3.
ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the reaction with sigmoidal kinetics indicative of positive cooperativity for cob(II)alamin. Maximal EutT activity was obtained after metalation with ferrous ions. EutT/Fe(II) protein lost all activity upon exposure to air and H2O2, consistent with previously reported results indicating that EutT was an oxygen-labile metalloprotein containing a redox-active metal. Results of in vivo and in vitro analyses of single-amino-acid variants affecting a HX11CCXXC83 motif conserved in EutT proteins showed that residues His67, Cys80, and Cys83 were required for EutT function in vivo, while Cys79 was not. Unlike that of other variants, the activity of the EutTC80A variant was undetectable in vitro, suggesting that Cys80 was critical to EutT function. Results of circular dichroism studies indicate that the presence or absence of a metal ion does not affect protein folding. EutT can now be purified in the presence of oxygen and reactivated with ferrous ions for maximal activity.  相似文献   

4.
Glutathione reductase (EC 1.6.4.2) was purified from Eastern white pine (Pinus strobus L.) needles. The purification steps included affinity chromatography using 2′, 5′-ADP-Sepharose, FPLC-anion-exchange, FPLC-hydrophobic interaction, and FPLC-gel filtration. Separation of proteins by FPLC-anion-exchange resulted in the recovery of two distinct isoforms of glutathione reductase (GRA and GRB). Purified GRA had a specific activity of 1.81 microkatals per milligram of protein and GRB had a specific activity of 6.08 microkatals per milligram of protein. GRA accounted for 17% of the total units of glutathione reductase recovered after anion-exchange separation and GRB accounted for 83%. The native molecular mass for GRA was 103 to 104 kilodaltons and for GRB was 88 to 95 kilodaltons. Both isoforms of glutathione reductase were dimers composed of identical subunit molecular masses which were 53 to 54 kilodaltons for GRA and 57 kilodaltons for GRB. The pH optimum for GRA was 7.25 to 7.75 and for GRB was 7.25. At 25°C the Km for GSSG was 15.3 and 39.8 micromolar for GRA and GRB, respectively. For NADPH, the Km was 3.7 and 8.8 micromolar for GRA and GRB, respectively. Antibody produced from purified GRB was reactive with both native and denatured GRB, but was cross-reactive with only native GRA.  相似文献   

5.
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.  相似文献   

6.
The antigenic properties of purified glycinin subunits were studied using antibodies prepared against them. Antisera against native glycinin did not react with the isolated subunits, and antibodies prepared against the purified subunits were not active against native glycinin. When native glycinin -was denatured, the antiglycinin immunoglobulins lost their ability to react with it, although the denatured complex was then recognized by antibodies against the purified subunits. Substantial structural rearrangement apparently occurred when the native complex was denatured and disaggregated. Acidic polypeptides A1a, A1b, and A2 had similar determinants as judged by their reactions against A1a and A1a antisera. The reaction of the A3 polypeptides with these antibodies was of lower intensity and in each case clear spurs of cross-reactivity were visible. No cross-reaction was detected between polypeptide A4 and either anti-A1a or A2. Anti-A3 antibodies reacted with each of the acidic polypeptides of glycinin, and distinct spurs of cross-reactivity were observed between A3 vs A1a, A3 vs A2, and A3 vs A4. B1 Antisera developed a reaction of identity between basic polypeptides B1 and B2, but reacted very weakly with B3 and B4. The acidic and basic polypeptides of glycinin were immunologically unrelated. The results demonstrated that immunological tests would successfully differentiate some members of the family of acidic subunits, and other immunoglobulins would discriminate between members of the family of basic subunits.  相似文献   

7.
Human serum transcobalamin II (TC II), a vitamin B12 (Cbl) transport protein, complexes with Cibacron Blue F3GA, a reactive blue dye which can bind to proteins that require nucleotides as cofactors. Apo-TC II and holo-TC II both bind, but intrinsic factor (IF) and R-type binders of Cbl do not. Other mammalian species TC II also complex with the dye. Greater than 87% of the applied TC II-CN-[57Co]Cbl remains bound to the dye even at pH 4.0. At pH values below this, the CN-[57Co]Cbl dissociates off TC II which remains bound to the dye. High salt concentrations will break the TC II-dye complex. Ionic forces were considered not to be involved since complexing also occurred at pH 9.0, 2.5 pH units above the isoelectric point of TC II. Failure to dissociate the TC II-dye complex with 50% glycerol makes hydrophobic interactions unlikely. In addition to the potential uses of TC II-Cibacron Blue F3GA complexes in a total scheme for protein purification, the possibility that TC II is a nucleotide-requiring protein should be explored.  相似文献   

8.
Regulation of the Calvin–Benson cycle under varying light/dark conditions is a common property of oxygenic photosynthetic organisms and photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the targets of this complex regulatory system. In cyanobacteria and most algae, photosynthetic GAPDH is a homotetramer of GapA subunits which do not contain regulatory domains. In these organisms, dark-inhibition of the Calvin–Benson cycle involves the formation of a kinetically inhibited supramolecular complex between GAPDH, the regulatory peptide CP12 and phosphoribulokinase. Conditions prevailing in the dark, i.e. oxidation of thioredoxins and low NADP(H)/NAD(H) ratio promote aggregation. Although this regulatory system has been inherited in higher plants, these phototrophs contain in addition a second type of GAPDH subunits (GapB) resulting from the fusion of GapA with the C-terminal half of CP12. Heterotetrameric A2B2-GAPDH constitutes the major photosynthetic GAPDH isoform of higher plants chloroplasts and coexists with CP12 and A4-GAPDH. GapB subunits of A2B2-GAPDH have inherited from CP12 a regulatory domain (CTE for C-terminal extension) which makes the enzyme sensitive to thioredoxins and pyridine nucleotides, resembling the GAPDH/CP12/PRK system. The two systems are similar in other respects: oxidizing conditions and low NADP(H)/NAD(H) ratios promote aggregation of A2B2-GAPDH into strongly inactivated A8B8-GAPDH hexadecamers, and both CP12 and CTE specifically affect the NADPH-dependent activity of GAPDH. The alternative, lower activity with NADH is always unaffected. Based on the crystal structure of spinach A4-GAPDH and the analysis of site-specific mutants, a model of the autonomous (CP12-independent) regulatory mechanism of A2B2-GAPDH is proposed. Both CP12 and CTE seem to regulate different photosynthetic GAPDH isoforms according to a common and ancient molecular mechanism.  相似文献   

9.
Abstract

Angiotensin II [1-8 or 2-8] analogues and [4–8] fragments were dimerized through the amino-or carboxy-terminal groups in order to try to increase their potency as reported for other hormones. The binding affinity to the angiotensin II receptor subtypes A (A IIA) and B (A IIB) was tested and compared to the potency in rabbit aortic ring. The [2–8] dimers coupled through the N-terminus show no significant change in potency in aortic ring. The [4–8] fragments coupled through the N-terminus are inactive in the ring. They have however a significantly increased affinity for the A IIA receptor, the specific function of which has not yet been reported. When angiotensin II analogues or fragments are coupled through the C-terminus, there was a significant drop in affinity and potency, confirming the importance of the free carboxyl group in position 8 for binding and activity. It is concluded that binding to the A IIB receptor correlates well with the effectiveness in aortic ring. However, in contrast to the beneficial effect reported for a large number of other hormones, dimerization of angiotensin II or its fragments is not accompanied by an increased biological activity in aortic ring.  相似文献   

10.
The acidic and the basic subunits were shown to be present in equimolar amounts in the 11S globulin molecule by the densitometric scanning of the SDS gel and the molecular weight consideration. The four acidic subunits (A1, A2, A3 and A4) were found to be present in the approximate molar ratio of 1:1:2:2. Four basic subunits separated and designated as B1, B2, B3 and B4 based on the relative mobilities in the acidic gel in 7 m urea were found to be present in the approximate molar ratio of 1:1:2:2. The four basic subunits were fractionated in approximately same amounts into three different peaks, peak I (B1 and B2), peak II (B3) and peak III (B4) by CM-Sephadex C–50 column chromatography in the presence of 6 m urea. Three kinds of intermediary subunits of 11S globulin were fractionated with DEAE-Sephadex A–50 in the absence of reducing agents in 6 m urea, and disulfide bonds appeared to participate in the binding between the acidic and the basic subunits in the molar ratio of 1: 1 with the following combinations; A1 and A2 combined with B3, A3 with B1 and B2, and A4 with B4. In view of the above results and molecular weight consideration, a new model of subunit structure was proposed for 11S globulin.  相似文献   

11.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

12.
The biosynthesis of transcobalamin II was investigated in primary cultures of adult rat liver parenchymal cells maintained in serum-free media. The data indicate that these hepatocytes secrete a vitamin B12-binding substance into the culture medium which is identical to rat serum transcobalamin II as judged by the following criteria: (i) gel filtration on columns of Sephadex G-200; (ii) ion-exchange chromatography on columns of diethyl aminoethyl cellulose and carboxymethyl cellulose; (iii) polyacrylamide-gel electrophoresis at pH 9.5; and (iv) the ability to facilitate cellular vitamin B12 uptake by HeLa cells and mouse L-929 fibroblasts in culture. The secretion of transcobalamin II by the liver parenchymal cells was blocked by cycloheximide, puromycin, and p-fluorophenylalanine. The inhibition by cycloheximide, but not that of the other inhibitors, was partially reversed upon removal of the drug. The liver parenchymal cells incorporated radioactive amino acids into transcobalamin II which was absorbed from the growth medium using affinity chromatography on Sepharose containing covalently linked B12. Collectively, these data indicate that rat liver parenchymal cells, in culture, are capable of the biosynthesis de novo of transcobalamin II and the subsequent secretion of this protein into the culture media.  相似文献   

13.
The influence of UV-B irradiation on photosynthetic oxygen evolution by isolated spinach thylakoids has been investigated using thermoluminescence measurements. The thermoluminescence bands arising from the S2QB - (B band) and S2QA (Q band) charge recombination disappeared with increasing UV-B irradiation time. In contrast, the C band at 50°C, arising from the recombination of QA - with an accessory donor of Photosystem II, was transiently enhanced by the UV-B irradiation. The efficiency of DCMU to block QA to QB electron transfer decreased after irradiation as detected by the incomplete suppression of the B band by DCMU. The flash-induced oscillatory pattern of the B band was modified in the UV-B irradiated samples, indicating a decrease in the number of centers with reduced QB. Based on the results of this study, UV-B irradiation is suggested to damage both the donor and acceptor sides of Photosystem II. The damage of the water-oxidizing complex does not affect a specific S-state transition. Instead, charge stabilization is enhanced on an accessory donor. The acceptor-side modifications decrease the affinity of DCMU binding. This effect is assumed to reflect a structural change in the QB/DCMU binding site. The preferential loss of dark stable QB - may be related to the same structural change or could be caused by the specific destruction of reduced quinones by the UV-B light.Abbreviations Chl chlorophyll - DCMU 3-(3,4,-dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA first quinone electron acceptor of PS II - QB second quinone electron acceptor of PS II - Tyr-D accessory electron donor of PS II - S0-S4 charge storage states of the water-oxidizing complex  相似文献   

14.
Among the threonine dehydratase activities in liver of rat fed on basal diet (B-group), lysine added diet (L-group) and threonine added diet (T-group), a following relationship was found: AB?ALT, where AB, AL and AT were the activities of B-, L-and T-group, respectively. The types of the activity increase in L- or T-group were investigated by examining the possibility of the cause—the existence of activators in L- or T-group (I), the existence of inhibitors in B-group (II), the activation of the latent enzyme in L- or T-group (III), and the induction of the dehydratase by biosynthesis in L- or T-group (IV). Addition of various amounts of liver homogenate of L- or T-group to a given amount of that of B-group gave a result as would be obtained in cases where neither activators nor inhibitors existed in the liver (I and II). No correlationship was found between the activity and the preincubation time, which denied the presence of the latent enzyme which would easily change into the active form by preincubation (III). Actinomycin D administered to rats inhibited the increase of the dehydratase activity of L- or T-group by about 50% (IV). On the other hand, preliminary experiments using hypophysectomized or adrenal-ectomizecl rats showed the results of Aв?AL?Aт. Both results may suggest the possibility that the increase of the dehydratase activity is ascribed to the induction of this enzyme through biosynthesis, and perhaps through endocrine systems.  相似文献   

15.
16.
Certain phenolic compounds represent a distinct class of Photosystem (PS) II QB site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of QB sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified QA to QB electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of QB site inhibitors, DCMU and atrazine. In the sensitive centers, the S2QA state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S2QA state than the S1QA state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S2-multiline electron paramagnetic resonance (EPR) signal and the ‘split’ EPR signal, originating from the S2YZ state showed no significant changes upon binding of phenolic inhibitors at the QB site. We thus propose a working model where QA redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the QB niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the QB site.  相似文献   

17.
Vitamin B12-dependent methionine synthetase (N5-methyItetrahydrofolate-homocysteine Bi2-methyltransferase; EC 2.1.1.13) was partially purified from two different types of photo-synthetic bacteria, Chromatium D and Rhodospirillum rubrum.

Chromatium D, which does not produce vitamin B12, possessed apomethionine synthetase when grown in the absence of the vitamin. Partially purified apoenzyme was converted to holoenzyme efficiently with CH3B12 or OHB12. Holo-methionine synthetase was purified 244 fold with 56.4 % recovery from Chromatium D cells grown with vitamin B12 added. The partially purified enzyme required reductants but was only partially dependent on S-adenosylmethionine.

On the other hand, Rsp. rubrum methionine synthetase which was always present as holoenzyme, in contrast with that of Chromatium D, was purified 40 fold with 2.8% recovery. The obtained preparation required S-adenosylmethionine and reductants for the enzyme activity. The optimal pH of Chromatium D enzyme and of Rsp. rubrum enzyme was in the range of 7.5~7.8 and 6.5~6.75, respectively.  相似文献   

18.
The role of the A2B adenosine receptor (AR) in prostate cell death and growth was studied. The A2B AR gene expression quantified by real-time quantitative RT-PCR and Western blot analysis was the highest among four AR subtypes (A1, A2A, A2B, and A3) in all three commonly used prostate cancer cell lines, PC-3, DU145, and LNCaP. We explored the function of the A2B AR using PC-3 cells as a model. The A2B AR was visualized in PC-3 cells by laser confocal microscopy. The nonselective A2B AR agonist NECA and the selective A2B AR agonist BAY60-6583, but not the A2A AR agonist CGS21680, concentration-dependently induced adenosine 3′,5′-cyclic monophosphate (cyclic AMP) accumulation. NECA diminished lactate dehydrogenase (LDH) release, TNF-α-induced increase of caspase-3 activity, and cycloheximide (CHX)-induced morphological changes typical of apoptosis in PC-3 cells, which were blocked by a selective A2B AR antagonist PSB603. NECA-induced proliferation of PC-3 cells was diminished by siRNA specific for the A2B AR. The selective A2B AR antagonist PSB603 was shown to inhibit cell growth in all three cell lines. Thus, A2B AR blockade inhibits growth of prostate cancer cells, suggesting selective A2B AR antagonists as potential novel therapeutics.  相似文献   

19.
Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1-deficient mice. The new PD-1/PD-L1 diabetes models may be valuable tools to study under well controlled experimental conditions distinct hierarchies of autoreactive CD8 T-cell responses, which trigger the initial steps of beta cell destruction or emerge during the pathogenic progression of EAD.  相似文献   

20.
Two major forms of liver microsomal cytochrome P 450, one from untreated rats (P 450 A2NI) and the other from phenobarbital-treated rats (P 450 B2PB), were partially purified. Reconstitution of monooxygenase activities of purified enzymes and inhibition patterns of these activities by antibodies in microsomes gave the following results: 1) aniline hydroxylase activity is mainly supported by cytochrome P 450 A2NI. This form is the major one in microsomes from control rats, but is also found at minute amounts in microsomes from phenobarbital-treated rats. It behaves as a constitutive form. 2) 4-nitroanisole-and benzphetamine-demethylase activities are mainly supported by cytochrome P 450 B2PB which is predominant in phenobarbital-treated rats but is also present in control microsomes at low levels. 3) 4-nitroanisole-O-demethylase activity is less specific than benzphetamine-N-demethylase activity towards cytochrome P 450 B2PB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号