首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we describe the synthesis and purification of biotinylated cholecystokinin-8 (Bio-CCK-8) and characterize its use as a probe for the pancreatic cholecystokinin receptor. CCK-8 (0.1 umoles) was reacted with either radiolabeled d-[8,9(-3)H]biotin succinimide ester (0.5 umoles) or N-hydroxysuccinimidyl-biotin in dimethylformamide and triethylamine, and purified by anion exchange chromatography. Concentrations of Bio-CCK-8 and CCK-8 needed for half-maximal inhibition of [125]I-CCK-8 binding to pancreatic membranes were the same (1.0 and 1.3 nM). Bio-CCK-8 retained full biological activity as determined by stimulation of pancreatic protein secretion from rats, and the biotin group bound to CCK-8 retained its high sensitivity for avidin.  相似文献   

2.
Biochemical studies on receptors for peptides are most often carried out on affinity-labelled (peptide-receptor) complexes. Necessarily, the assumption is made that a covalent (peptide-receptor) complex behaves as the native receptor. The validity of this assumption is dependent on both the affinity-labelling technique and the resolution of the analytical method used for biochemical characterization. We designed a new affinity-labelling probe in order to minimize structural modifications occurring within the affinity-labelled cholecystokinin (CCK) receptor protein. The probe was 125I-labelled 2-(p-azidosalicylamido)-1,3-dithiopropionate-[Thr28,Ahx31 ]CCK-25-33, (125I-ASD-[Thr28,Ahx31]CCK-25-33), the peptide moiety of which was released from its binding site by reduction. It was obtained by coupling a photoactivable chemical to [Thr28,Ahx31]CCK-25-33 via its N-terminus. The resulting peptide was HPLC purified and radioiodinated in the presence of chloramine T. Binding of 125I-ASD-[Thr28,Ahx31]CCK-25-33 was time- and temperature-dependent and reversible. At 25 degrees C, a steady-state level was reached after 60 min and half-maximal dissociation after 38 min. Binding was inhibited by [Thr28,Ahx31]CCK-25-33 and L-364-718 antagonist with IC50 0.4 nM and 0.9 nM, respectively. Photoaffinity labelling of pancreatic plasma membranes by 125I-ASD-[Thr28,Ahx31]CCK-25-33 identified a glycoprotein of Mr 85,000-100,000 which was retained on immobilized wheat germ agglutinin. Enzyme cleavage by endoproteinase Glu-C generated a main fragment of Mr 30,000-34,000. The same glycoprotein was photoaffinity labelled with 125I-DTyr-Gly-[Ahx28,31,pNO2Phe33]CCK-26-33 (Ahx, 2-aminohexanoic acid; pNO2Phe,p-nitrophenylalanine) an intrinsic probe having its photolabile group sited in the binding domain of cholecystokinin. 125I-ASD-[Thr28,Ahx31]CCK-25-33 is a potentially powerful tool for biologically and biochemically studying cholecystokinin receptors.  相似文献   

3.
Cholecystokinin-8 (CCK-8) causes exocrine pancreatic hypertrophy and hyperplasia. High doses of the CCK analogue cerulein causes necrosis and an inflammatory response in the pancreas. We have studied the pancreatic growth response in rats after administration of CCK-8 for 3 days, given either intermittently (20-80 microg/kg) twice a day, or continuously (2.4-48 microg/kg per 24 h). Plasma CCK-8 levels, pancreatic wet weight, water, protein and DNA contents and the pancreatic caspase-3 activity were measured. Cell proliferation was visualized by [3H]thymidine incorporation and apoptosis by TUNEL reaction. Continuous administration of CCK-8 dose-dependently increased the plasma CCK levels, the pancreatic wet weight, protein and DNA contents as well as thymidine labeling index, apoptotic index and caspase-3 activity. Intermittent injections of CCK-8 caused transient raises in plasma CCK, increased apoptotic index and caspase-3 activity, a dose-dependent increase in thymidine labeling but caused a dose-dependent reduction of pancreatic wet weight, protein, and DNA contents. It is concluded that CCK-8 causes both increased proliferation and apoptosis in the pancreas. In case of continuous administration of CCK-8, the proliferation outweighs the apoptosis causing hyperplasia but in the case of intermittent administration the opposite effect is seen.  相似文献   

4.
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca2+ signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca2+ concentration ([Ca2+]c). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM–1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca2+]c, followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca2+]c peak response, a faster rate of decay of [Ca2+]c and lower values for the steady state of [Ca2+]c, compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca2+ mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca2+ mobilization induced by 10 pM CCK-8. On the other hand, Ca2+ entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca2+ signals.  相似文献   

5.
This study investigates the effect of magnesium (Mg2+) on the secretory responses and the mobilization of calcium (Ca2+) and Mg2+ evoked by cholecystokinin-octapeptide (CCK-8) in the exocrine rat pancreas. In the isolated intact perfused pancreas CCK-8 (10–10 M) produced marked increases in juice flow and total protein output in zero and normal (1.1 mM) extracellular Mg2+ [Mg2+]o compared to a much reduced secretory response in elevated (5 mM and 10 mM) [Mg2+]o Similar effects of perturbation of [Mg2+]o on amylase secretion and 45Ca2+ uptake (influx) were obtained in isolated pancreatic segments. In pancreatic acinar cells loaded with the fluorescent bioprobe fura-2 acetomethylester (AM), CCK-8 evoked marked increases in cytosolic free Ca2+ concentration [Ca2+]i in zero and normal [Mg2+]o compared to a much reduced response in elevated [Mg2+]o Pretreatment of acinar cells with either dibutyryl cyclic AMP (DB2 cAMP) or forskolin had no effect on the CCK-8 induced changes in [Ca2+]i. In magfura-2-loaded acinar cells CCK-8 (10–8 M) stimulated an initial transient rise in intracellular free Mg2+ concentration [Mg2+]i followed by a more prolonged and sustained decrease. This response was abolished when sodium Na+ was replaced with N-methyl-D-glucamine (NMDG). Incubation of acinar cells with 10 mM Mg2+ resulted in an elevation in [Mg2+]i. Upon stimulation with CCK-8, [Mg2+]i. decreased only slightly compared with the response obtained in normal [Mg2+]o. CCK-8 caused a net efflux of Mg2+ in pancreatic segments; this effect was abolished when extracellular sodium [Na+]o was replaced with either NMDG or choline. The results indicate that Mg2+ can regulate CCK-8-evoked secretory responses in the exocrine pancreas possibly via Ca2+ mobilization. Moreover, the movement of Mg2+ in pancreatic acinar cells is dependent upon extracellular Na+.  相似文献   

6.
The receptor binding of CCK analogues was determined in terms of the inhibition of [125I]CCK binding in isolated rat pancreatic acini. The inhibition curve produced by CCK-8 showed the same feature as that produced by synthetic human CCK-33. The relative potency values of CCK analogues to half-maximally inhibit specific CCK binding were calculated; CCK-8 was equal to human CCK-33, 3-fold stronger than natural porcine CCK-33 and 39, and 700-fold stronger than the unsulphated form of synthetic human CCK-33. Our data suggest that CCK-33, one of the longer molecular forms of CCK, is as important as CCK-8 in the mechanism of physiological actions of CCK.  相似文献   

7.
The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus differ from S-14 receptors in other tissues, S-14 receptors in this tissue also exhibit selective ligand specificities, these receptors are regulated by CCK-8 and guanine nucleotides, three receptor proteins of apparent Mr = 200,000, 80,000, and 70,000 specifically bind S-14, and (v) these receptors are regulated by S-14 in vivo as evidenced by decreased binding in streptozotocin diabetic rats characterized by hypersomatostatinemia.  相似文献   

8.
Cholecystokinin-octapeptide (CCK-8) is a putative neurotransmitter which has been demonstrated previously to occur in midbrain dopamine neurones. We observe that CCK-8 causes changes in both the affinity and density of binding sites for [3H]-dopamine in rat striatal homogenates, in vitro, upon incubation with the peptide at a concentration of 1 micromolar. A dose-response study of the competetion of CCK-8 with [3H]-dopamine binding indicates an IC50 for the peptide of 450 nM; desulfated CCK-8 and the related peptide caerulin are at least 4-fold less active than CCK-8. CCK-8 was also administered to rats in a separate study; the binding of [3H]-dopamine was evaluated to homogenates of striata and olfactory tubercles obtained from these animals, which had been treated with systemic injection at a dose of 20 micrograms/kg, daily, for four days. A decrease in the number of striatal binding sites for the radioligand was observed, with a concomitant increase in the number of binding sites in the olfactory tubercle. These data collectively suggest a possible regulatory role for CCK-8 in the ascending dopamine systems.  相似文献   

9.
Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either [gamma-(32)P]ATP or (14)C/(3)H-labeled and unlabeled nucleotides as appropriate substrates. Data show that the juice contains the enzyme ecto-nucleoside triphosphate diphosphohydrolase that can hydrolyze both [(14)C]ATP and [(3)H]ADP about equally well, i.e. CD39. Reverse-phase high-performance liquid chromatography analysis additionally shows that this enzyme has broad substrate specificity toward other nucleotides, UTP, UDP, ITP, and IDP. In addition, secretion contains ecto-5'-nucleotidase, CD73, further converting [(3)H]AMP to adenosine. Along with highly active hydrolytic enzymes, there were also ATP-generating enzymes in pancreatic juice, adenylate kinase, and NDP kinase, capable of sequentially phosphorylating AMP via ADP to ATP. Activities of nonspecific phosphatases, nucleotide pyrophosphatase/phosphodiesterases, and adenosine deaminase were negligible. Taken together, CCK-8 stimulation of pancreas causes release of both ATP-consuming and ATP-generating enzymes into pancreatic juice. This newly discovered richness of secreted enzymes underscores the importance of purine signaling between acini and pancreatic ducts lumen and implies regulation of the purine-converting enzymes release.  相似文献   

10.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

11.
Competitive inhibition binding studies on membranes from the rat pancreatic AR 4-2J cell line revealed the predominance (80%) of low selectivity CCK receptors (KD of 1 nM and 4 nM for, respectively, CCK-8 and gastrin-17I (G-17I] over selective receptors (20% with a KD of 1 nM and 1 microM for, respectively, CCK-8 and G-17I). Amylase secretion was stimulated by low concentrations of CCK-8, G-17I and CCK-4. G-17I-induced amylase secretion was unaffected by 100 nM of the selective peripheral CCK-A receptor antagonist L-364,718, suggesting that amylase hypersecretion followed non-selective CCK receptor activation, a function normally assumed by selective CCK-A receptors in rat pancreatic acini. Direct ultraviolet irradiation of AR 4-2J cell membranes preloaded with 125I-BH-CCK-33 or 125I(Leu)G(2-17)I resulted in covalent cross-linking with, respectively, a 90 kDa protein and a 106 kDa protein, both distinct from the 81 kDa CCK binding species revealed in normal rat pancreatic membranes. Gpp[NH]p increased the dissociation rate of CCK-8 and G-17I from AR 4-2J cell membranes, indicating a coupling of receptors with guanyl nucleotide regulatory protein(s) G. [32P]ADP-ribosylation of AR 4-2J cell membranes allowed to detect the presence of two Gs alpha (the 50 kDa form predominating over the 45 kDa form) and one Gi alpha (41 kDa). However, Gi and Gs may not be involved in gastrin stimulation of amylase secretion, as Bordetella pertussis toxin and cholera toxin pretreatment of cells did not suppress G-17I-dependent amylase secretion.  相似文献   

12.
In rat pancreatic plasma membranes, preincubated with [125I]cholecystokinin-33 (CCK-33) and washed free of unbound tracer, the irradiation by UV light induced the irreversible binding of radioactivity to high molecular weight peptides as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) and autoradiography. This was not observed when the membranes were preincubated in the simultaneous presence of [125I]CCK-33 and of either an excess of unlabelled CCK-8 or of guanosine 5'-(beta, gamma-imido)-triphosphate. The radioactivity was mostly crosslinked with a Mr 96,000 peptide and peptide species of Mr greater than 200,000, after SDS solubilization in the absence of beta-mercaptoethanol. Peptide reduction with beta-mercaptoethanol converted the high molecular weight radioactive species into a Mr 76,000 peptide that contained as much as 65% of the radioactivity crosslinked. The Mr 76,000 peptide appears, therefore, to be a disulfide-linked constituent of rat pancreatic cholecystokinin receptors.  相似文献   

13.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

14.
The activation energy of adenylate cyclase by p[NH]ppG in rat pancreatic plasma membranes was estimated to be 141-189 kj/mol. When a high concentration of secretin or CCK-8 (C-terminal octopeptide of cholecystokinin-pancreozimin) was added to the assay medium, the activation energy was reduced to 73 kj/mol. This hormone effect was exerted on the activation energy of the activation process of adenylate cyclase by p[NH]ppG. Indeed, when plasma membranes were preactivated with p[NH]ppG alone or with p[NH]ppG and CCK-8 and then washed, there resulted a persistent activation with low activation energy (65 and 48 kj/mol, respectively). A similar low activation energy was observed in membranes preincubated with GMP and CCK-8. The latter treatment could not induce persistent activation but facilitated the activation by p[NH]ppG, suggesting that the step of p[NP]ppG activation requiring a high activation energy in the absence of hormone had developed during preincubation with GMP and CCK-8, and had not been reversed by membrane washing. By contrast, EDTA pretreatment did not influence p[NH]ppG activation while provoking a reversible deactivation of persistently activated adenylate cyclase.  相似文献   

15.
A rapid and simple one-pot method for O-sulfation of nonsulfated cholecystokinin octapeptide (CCK-8) was developed using sulfuric acid and dicyclohexylcarbodiimide (DCC) without protection of the amino acid side chains. The extent of sulfation was increased with increasing the amount of reactants, sulfuric acid, and DCC, and reached maximum (40%) with fourfold molar excess of sulfuric acid and 40-fold molar excess of DCC. The excess of nonsulfated peptide inhibited the sulfation. The sulfation product was purified by HPLC or TLC to give a pure sulfated substance which showed exactly the same behavior as that of an authentic O-sulfated CCK-8 on HPLC or TLC. The purified sulfated peptide was active in stimulating amylase secretion from rat pancreatic fragments, and amino acid analysis showed that the tyrosine residue in the peptide existed in O-sulfated form. Sulfation with [35S]sulfuric acid-DCC produced a radioactive substance, from which O-[35S]sulfated CCK-8 could be easily purified by two-dimensional TLC.  相似文献   

16.
Previous studies have suggested that somatostatin inhibits pancreatic secretion at a central vagal site, and the dorsal vagal complex (DVC) is involved in central feedback inhibition of the exocrine pancreas. The aim of this study was to investigate the effect of exogenous somatostatin in the DVC on pancreatic secretion and the somatostatin receptor subtype(s) responsible for the effect. The effects of somatostatin microinjected into the DVC on pancreatic secretion stimulated by cholecystokinin octapeptide (CCK-8) or 2-deoxy-d-glucose (2-DG) were examined in anesthetized rats. To investigate the somatostatin inhibitory action site, a somatostatin receptor antagonist [SRA; cyclo(7-aminoheptanoyl-Phe-d-Trp-Lys-Thr)] was microinjected into the DVC before intravenous infusion of somatostatin and CCK-8/2-DG. The effects of injection of a somatostatin receptor-2 agonist (seglitide) and combined injection of somatostatin and a somatostatin receptor-2 antagonist (CYN 154806) in the DVC on the pancreatic secretion were also investigated. Somatostatin injected into the DVC significantly inhibited pancreatic secretion evoked by CCK-8 or 2-DG in a dose-dependent manner. SRA injected into the DVC completely reversed the inhibitory effect of intravenous administration of somatostatin. Seglitide injected into the DVC also inhibited CCK-8/2-DG-induced pancreatic protein secretion. However, combined injection of somatostatin and CYN 154806 did not affect the CCK-8/2-DG-induced pancreatic secretion. Somatostatin in the DVC inhibits pancreatic secretion via somatostatin receptor-2, and the DVC is the action site of somatostatin for its inhibitory effect.  相似文献   

17.
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.  相似文献   

18.
BackgroundIn this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM–50 μM) on isolated mouse pancreatic acinar cells.MethodsChanges in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed.ResultsLuzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion.ConclusionThe melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function.General significanceThe effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.  相似文献   

19.
The mechanisms by which biotin enters and leaves brain, choroid plexus and cerebrospinal fluid (CSF) were investigated by injecting [3H]biotin either intravenously or intraventricularly into adult rabbits. [3H]biotin, either alone or together with unlabeled biotin was infused at a constant rate into conscious rabbits. At 180 minutes, [3H]biotin had entered CSF, choroid plexus, and brain. In brain, CSF, and plasma, greater than 90% of the nonvolatile3H was associated with [3H]biotin. The addition of 400 mol/kg unlabeled biotin to the infusion syringe decreased the penetration of [3H]biotin into brain and CSF by approximately 70 percent. Two hours after an intraventricular injection, [3H]biotin was cleared from the CSF more rapidly than mannitol and minimal metabolism of the [3H]biotin had occurred in brain. However, 18 hours after an intraventricular injection, approximately 35% of the [3H]biotin remaining in brain had been covalently incorporated into proteins, presumably into carboxylase apoenzymes. These results show that biotin enters CSF and brain by saturable transport systems that do not depend on metabolism of the biotin. However, [3H]biotin is very slowly incorporated covalently into proteins in brain in vivo.  相似文献   

20.
Patel  R.  Yago  M.D.  Mañas  M.  Victoria  E.M.  Shervington  A.  Singh  J. 《Molecular and cellular biochemistry》2004,261(1):83-89
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg–1, I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg–1 urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 ± 2.42 mg dl–1 (n= 44) and >500 mg dl–1 (n= 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 ± 0.05 ul min–1 (n= 10) and 1.28 ± 0.16 ul min–1 (n= 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 ± 15.41 nM (n= 15) and 130.62 ± 17.66 nM (n= 8), respectively. CCK-8 (10–8M) induced a peak response of 436.55 ± 36.54 nM (n= 15) and 409.31 ± 34.64 nM (n= 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 ± 0.06 nM (n= 18) and 0.86 ± 0.04 nM (n= 10). In the presence of CCK-8 (10–8) [Mg2+]i in control and diabetic cells was 0.80 ± 0.05 nM (n= 18) and 0.60 ± 0.02 nM (n= 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis. (Mol Cell Biochem 261: 83–89, 2004)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号