首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A procedure for rapid purification to homogeneity of glucose-6-phosphate dehydrogenase (G6PD) is herein presented. Our method is not new, but represents a simplification of the method of De Flora et al. (Arch. Biochem. Biophys. 169, 362-3, 1975) which consisted of three steps: DEAE-Sephadex, phosphocellulose (P11) and affinity chromatography on 2'5' ADP-Sepharose. These authors eluted the enzyme from the P11 with phosphate and from 2'5' ADP-Sepharose with KC1 and NADP. By our method, the DEAE-Sephadex step is omitted, the G6PD is eluted from P11 with citrate and NADP, and from 2'5' ADP-Sepharose with KC1, NADP and EDTA. The elution of the enzyme from the phosphocellulose was studied in detail and the temperature effect has been described. We report here an application of this method to a rapid microscale purification starting from 3.5-4 ml of rabbit blood, which can be performed in about 8 hours and a macroscale purification starting from 180-200 ml of human blood, which takes a day and a half.  相似文献   

2.
In the present study, blood samples from 1183 children aged 0.5-6 years were taken. Three children were found with G6PD deficiency by examining the enzyme activity and hemoglobin ratio. Some kinetic properties of glucose 6-phosphate dehydrogenase enzyme (G6PD) were studied after the purification of the enzyme with ammonium fractionation, dialysis and 2',5' ADP-Sepharose 4B affinity chromatography from a healthy person and from three G6PD-deficient people. The purity of the enzymes was confirmed by SDS-PAGE electrophoresis. The effects of some drugs which are known inhibitors of G6PD activity were studied. Some of the drugs stimulated the activity of the enzyme in two of the three cases with G6PD deficiency. KM values, Vmax values for G6P and NADP+, optimum pH and optimum temperature for the enzyme from the healthy person and the three G6PD-defficient people are reported.  相似文献   

3.
Coupling of N6-(aminohexyl)-adenosine 2′,5′-bisphosphate to BrCN-activated agarose was exploited to develop a simple procedure by which homogeneous glucose 6-phosphate dehydrogenase can be isolated in good yield and in a short time (2 days) from human erythrocytes. The method involves three steps, i.e., chromatography on DEAE-Sephadex, chromatography on phosphocellulose and affinity chromatography on the above ligand-matrix complex. This procedure is applicable for the purification of glucose 6-phosphate dehydrogenase from single donors.  相似文献   

4.
Glucose 6-phosphate dehydrogenase (d -glucose 6-phosphate: NADP + oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2′, 5′-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and K M and V max values for NADP + and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4°C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I 50 values were determined from Activity %-[Drug] graphs and K i values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

5.
1. RNA polymerase activity of Escherichia coli extracts prepared from cells in exponential and stationary phases of growth, when measured in the presence and absence of external template, showed significant qualitative differences. 2. In both extracts, polymerase activity was higher when assayed with external template, suggesting the presence of a pool of enzyme not bound to cellular DNA. 3. In the crude extract, the fraction of enzyme bound to cellular DNA is higher during the exponential phase of growth. 4. A method is described for the purification of enzyme molecules not tightly bound to cellular DNA from exponential- and stationary-phase cultures. 5. Purified enzyme preparations showed differences in template requirement and subunit composition. 6. On phosphocellulose chromatography of stationary-phase enzyme, a major portion of polymerase activity eluted from the column with 0.25m-KCl. In the case of exponential-phase enzyme, polymerase activity eluted from a phosphocellulose column mainly with 0.35m-KCl. 7. Enzyme assays done with excess of bacteriophage T(4) DNA showed a strong inhibition of stationary-phase enzyme by this template. The exponential-phase enzyme was only slightly inhibited by excess of bacteriophage T(4) DNA.  相似文献   

6.
In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.  相似文献   

7.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from Lake Van fish (Chalcalburnus tarichii pallas, 1811) liver, using a simple and rapid method, and some characteristics of the enzyme were investigated. The purification procedure was composed of two steps: homogenate preparation and 2', 5'-ADP Sepharose 4B affinity gel chromatography, which took 7-8 hours. Thanks to the two consecutive procedures, the enzyme, having specific activity of 38 EU/mg protein, was purified with a yield of 44.39% and 1310 fold. In order to control the enzyme purification SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. Optimal pH, stable pH, optimal temperature, Km and, Vmax values for NADP+ and glucose 6-phosphate (G6P) were also determined for the enzyme. In addition, molecular weight and subunit molecular weights were found by sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography respectively.  相似文献   

8.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2', 5'-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and KM and Vmax values for NADP+ and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4 degrees C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I50 values were determined from Activity%-[Drug] graphs and Ki values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

9.
General procedures for the rapid, large-scale purification of recombinant Lactobacillus casei thymidylate synthase and its mutants have been established. An effective method employs sequential phosphocellulose and hydroxylapatite chromatography. Crude cell extracts are directly applied to phosphocellulose, and the enzyme is obtained in a nearly pure state by stepwise elution with KCl. The eluate is directly applied to hydroxylapatite, and the homogeneous enzyme is eluted with a gradient of potassium phosphate. The method has been successful for the purification of recombinant wild-type enzyme and all mutants thus far examined. The entire purification procedure has been automated using a commonly available FPLC system and can be performed in several hours with minimal operator time.  相似文献   

10.
Glutathione reductase (GR) (EC 1.6.4.2) was studied in crude and partially purified extracts from nonhardened (25/20 °C D/N) and hardened (5/5 °C D/N) spinach-leaf tissue. Crude extracts of hardened tissue showed a 66% increase in glutathione reductase activity over that of nonhardened tissue. The enzyme was purified by ammonium sulfate precipitation, Sephadex G-150 chromatography, 2′, 5′ ADP-Sepharose affinity chromatography, and DEAE-Sephadex A-50 ion-exchange chromatography. The partially purified enzyme from the two sources showed different kinetic characteristics, heat inactivation, freezing inactivation, and electrophoretic mobilities. Hardened leaves contain different forms of glutathione reductase than do nonhardened leaves. GR from hardened spinach has greater stability against freezing and a higher affinity for substrates at low temperature than does GR from nonhardened spinach.  相似文献   

11.
Pyruvate kinase from ascites tumour cells can be eluted from phosphocellulose by very low concentrations of phosphoenolpyruvate, fructose 1,6-bisphosphate, adenosine 5'-diphosphate and pyrophosphate, respectively. The appropriate limiting conditions for "facilitated desorption" of the enzyme from phosphocellulose by these ligands have been elaborated for achieving maximum selectivity and recovery in the process of its purification. This method has been designated as "affinity elution chromatography" owing to the specific interactions between a ligand as a constituent of the eluting medium with the adsorbed enzyme, which causes its selective desorption from the ion-exchanger. Affinity elution with phosphoenolpyruvate has been found to be very effective for preparation of the M-types of pyruvate kinase. A specific activity of 420 for an almost homogeneous preparation of pyruvate kinase from ascites tumour cells has maximally been obtained.  相似文献   

12.
DNA polymerases have been isolated from muscle and melanoma tissues of Xiphophorus, which are similar to retroviral RNA-dependent DNA polymerases as they prefer RNA to DNA templates. They appear to associate with submicroscopic structures which exhibit a density of about 1.13 g/ml after sucrose-density-gradient centrifugation. The RNA-dependent-DNA-polymerase-like enzymes could be separated from the DNA-dependent DNA polymerases by DEAE-cellulose chromatography. Further purification on phosphocellulose revealed that the muscle enzyme eluted at the void volume and at about 0.6 M KCl, whereas most of the melanoma enzyme eluted at 0.1 M KCl. Comparison of the template primer specificities of the muscle and melanoma enzymes with those of known DNA polymerases showed obvious similarities to the RNA-dependent DNA polymerase isolated from Rous sarcoma virus.  相似文献   

13.
A two-step procedure for the purification of 6-phosphogluconate dehydrogenase (EC 1.1.1.44; 6-PGDH) from sheep liver is described. The enzyme is directly bound to cellulose phosphate by batch extraction and eluted with a linear salt gradient. Purification is completed by affinity chromatography using NADP(+)-agarose. The result is 6-PGDH of high purity, greatly increased yield, and the highest specific activity yet achieved, with a significant reduction in the purification time.  相似文献   

14.
The partial purification (123-fold) of 2-oxoaldehyde dehydrogenase (2-oxoaldehyde:NAD(P)+ oxidoreductase, 1.2.1.23) from rat liver was carried out using a purification procedure which involved (NH4)2SO4 fractionation, DEAE-Sephadex chromatography, Blue-Dextran affinity chromatography and CM-Sephadex chromatography. A single form of the enzyme was observed, mol. wt. approx. 50000 by gel chromatography. 2-Oxoaldehyde dehydrogenase appears to be highly specific for NADP+ and methylglyoxal. No activity is observed in the absence of certain amines which have vicinal amino and hydroxyl groups. The only known amine which activates the enzyme at physiological pH is L-serine methyl ester, suggesting that the regulation of this enzyme in vivo may require a derivative of serine.  相似文献   

15.
1. A method for the purification of horse serum lecithin:cholesterol acyltransferase has been established. 2. The method involves the adsorption of the enzyme from diluted horse serum on DEAE-Sephadex A-50, (NH4)2SO4 fractionation, 1-butanol treatment, and chromatographic techniques of DEAE-Sepharose CL-6B, DEAE-Sephadex A-50, Affi-Gel blue and hydroxylapatite. 3. The resultant enzyme preparation essentially formed a single main band when subjected to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. 4. The final purification of the enzyme was 20,000-fold with 7% yield. 5. The apparent mol. wt of the enzyme was 64,000. 6. The activity of the enzyme was stable for 3 days at 0 degree C.  相似文献   

16.
In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.  相似文献   

17.
Cinnamyl alcohol dehydrogenase (CAD) is an enzyme involved in lignin biosynthesis. In this paper, we report the purification of CAD to homogeneity from tobacco (Nicotiana tabacum) stems. The enzyme is low in abundance, comprising approximately 0.05% of total soluble cell protein. A simple and efficient purification procedure for CAD was developed. It employs three chromatography steps, including two affinity matrices, Blue Sepharose and 2′5′ ADP-Sepharose. The purified enzyme has a specific cofactor requirement for NADP and has high affinity for coniferyl alcohol (Km = 12 micromolar) and coniferaldehyde (Km = 0.3 micromolar). Two different sized polypeptide subunits of 42.5 and 44 kilodaltons were identified and separated by reverse-phase HPLC. Peptide mapping and amino acid composition analysis of the polypeptides showed that they are closely related, although not identical.  相似文献   

18.
A rapid procedure for the purification of RNA polymerase II from Saccharomyces cerevisiae is described. Total RNA polymerase activity was solubilized from whole cells by sonication in 0.32 M (NH4)2SO4 and RNA polymerase II purified by polyethylenimine fractionation, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, DEAE-Sephadex, and phosphocellulose. The procedure may be completed in 2.5 days and the resultant enzyme is judged to be greater than 90% pure.  相似文献   

19.
Glutathione reductase has been purified to homogeneity by a method which is an improvement of an earlier procedure (Carlberg, I. and Mannervik, B. (1975) J. Biol. Chem. 250, 5475–5480). The new steps in the purification scheme include affinity chromatography on 2′,5′ ADP-Sepharose 4B. Antibodies to glutathione reductase from rat liver were raised in rabbits and used for analysis of the enzyme by quantitative ‘rocket’ immunoelectrophoresis. Glutathione reductase from human erythrocytes, porcine erythrocytes, and calf-liver gave precipitin lines showing partial identity with the rat liver enzyme in Ouchterlony double diffusion experiments. Enzyme from spinach, yeast (Saccharomyces cerevisiae), and the photosynthetic bacterium Rhodospirillum rubrum did not give precipitates with the antibodies to the enzyme from rat liver. Titration of glutathione reductase from the different sources with antibodies confirmed the cross-reactivity of the mammalian enzymes; the human enzyme giving the strongest heterologous reaction. No reaction was observed with the enzyme from spinach, yeast, and Rhodospirillum rubrum. NADPH, NADP+, and 2′,5′ ADP were found to inhibit the interaction between antibodies and glutathione reductase from rat liver and human erythrocytes. NADH, glutathione, or glutathione disulfide did not protect the enzyme from reacting with the antibodies. It is concluded that glutathione reductase has an antigenic binding site for the antibodies at the pyridine nucleotide-binding site of the enzyme molecule.  相似文献   

20.
A soluble RNA-dependent RNA polymerase was isolated from poliovirus-infected HeLa cells and was shown to copy poliovirus RNA in vitro. The enzyme was purified from a 200,000-X-g supernatant of a cytoplasmic extract of infected cells. The activity of the enzyme was measured throughout the purification by using a polyadenylic acid template and oligouridylic acid primer. The enzyme was partially purified by ammonium sulfate precipitation, glycerol gradient centrifugation, and phosphocellulose chromatography. The polymerase precipitated in a 35% saturated solution of ammonium sulfate, sedimented at about 7S on a glycerol gradient, and eluted from phosphocellulose with 0.15 M KC1. The polymerase was purified about 40-fold and was shown to be totally dependent on exogenous RNA for activity and relatively free of contaminating nuclease. The partially purified polymerase was able to use purified polio virion RNA as well as a template. Under the reaction conditions used, the polymerase required an oligouridylic acid primer and all four ribonucleside triphosphates for activity. The optimum ratio of oligouridylic acid molecules to poliovirus RNA molecules for priming activity was about 16:1. A nearest-neighbor analysis of the in vitro RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA rendered it resistant to RNase digestion, thus suggesting that the product RNA was complementary to the virion RNA template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号