首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cell-free extracts from low-aeration suspensions of Rhodospirillum rubrum strain G-9, bacteriochlorophyll a was distributed in two bands after rate-zone sedimentation in sucrose density gradients. From the physicochemical properties of these fractions, it was concluded that the upper band consisted of small membrane fragments, whereas the major band was composed of fragmented vesicular intracytoplasmic membrane (chromatophores). After a pulse with L-[35S]methionine, apparent polypeptide subunits of the reaction center and light-harvesting complexes within the upper pigmented fraction were labeled more rapidly than those of chromatophores; after a chase with excess unlabeled L-methionine, radioactivity from these components within the upper band appeared to be chased into the corresponding polypeptides of chromatophores. These labeling patterns are interpreted to reflect growth initiation and maturation of the photosynthetic apparatus and may, in part, represent a general mechanism for the development of vesicular intracytoplasmic membranes.  相似文献   

2.
Sites of intracytoplasmic membrane growth and temporal relations in the assembly of photosynthetic units were examined in synchronously dividing Rhodopseudomonas sphaeroides cells. After rate-zone sedimentation of cell-free extracts, apparent sites of initiation of intracytoplasmic membrane growth formed an upper pigmented band that sedimented more slowly than the intracytoplasmic membrane-derived chromatophore fraction. Throughout the cell cycle, the levels of the peripheral B800-850 light-harvesting pigment-protein complex relative to those of the core B875 complex in the upper pigmented fraction were only about half those of chromatophores. Pulse-labeling studies with L-[35S]methionine indicated that the rates of assembly of proteins in the upper pigmented fraction were much higher than those of chromatophores throughout the cell cycle; rates for the reaction center polypeptides were estimated to be approximately 3.5-fold higher than in chromatophores when the two membrane fractions were equalized on a protein basis. In pulse-chase studies, radioactivity of the reaction center and B875 polypeptides increased significantly in chromatophores and decreased in the upper pigmented band during cell division. These data suggest that the B875 reaction center cores of the photosynthetic units are inserted preferentially into sites of membrane growth initiation isolated in the upper pigmented band and that the incomplete photosynthetic units are transferred from their sites of assembly into the intracytoplasmic membrane during cell division. These results suggested further that B800-850 is added directly to the intracytoplasmic membrane throughout the cell cycle.  相似文献   

3.
Radioactivity eventually destined for the chromatophore membrane of Rhodopseudomonas sphaeroides was shown in pulse-chase studies to appear first in a distinct pigmented fraction. The material formed an upper pigmented band which sedimented more slowly than chromatophores when cell-free extracts were subjected directly to rate-zone sedimentation on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified fraction contained polypeptide bands of the same mobility as light-harvesting bacteriochlorophyll alpha and reaction center-associated protein components of chromatophores; these were superimposed upon cytoplasmic membrane polypeptides. The pulse-chase relation was confined mainly to the polypeptide components of these pigment-protein complexes. It is suggested that the isolated fraction may be derived from sites at which new membrane invagination is initiated.  相似文献   

4.
Under carefully controlled ionic conditions, large-scale preparations of highly purified chromatophores and cell envelopes were obtained from phototrophically grown Rhodopseudomonas spheroides by zonal ultracentrifugation. The majority of the bacteriochlorophyll a was located in a single, discrete chromatophore band, whereas the envelopes were nearly devoid of photopigment. The envelope fraction contained substantial quantities of succinic dehydrogenase and cytochromes, confirming that phototrophically grown cells contain a photopigment-deficient cytoplasmic membrane. Magnesium at concentrations of 1.0 mM or higher caused chromatophores to reversibly aggregate with the cell envelope. Significant aggregation was also promoted by other divalent metals (Co(2+) > Mn(2+) > Ca(2+) > Mg(2+)), but aggregation was less extensive with monovalent cations. These results account for the distribution of photopigments in two bands reported by others and further suggest that the photosynthetic apparatus of R. spheroides is located on membranes largely distinct from the cell wall-cytoplasmic membrane complex.  相似文献   

5.
Radioactivity eventually destined for the chromatophore membrane of Rhodopseudomonas sphaeroides was shown in pulse-chase studies to appear first in a distinct pigmented fraction. This material formed an upper pigmented band which sedimented more slowly than chromatophores when cell-free extracts were subjected directly to rate-zone sedimentation on sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified fraction contained polypeptide bands of the same mobility as light-harvesting bacteriochlorophyll a and reaction center-associated protein components of chromatophores; these were superimposed upon cytoplasmic membrane polypeptides. The pulse-chase relation was confined mainly to the polypeptide components of these pigment-protein complexes. It is suggested that the isolated fraction may be derived from sites at which new membrane invagination is initiated.  相似文献   

6.
The kinetics of light-driven electron flow and the nature of redox centers at apparent photosynthetic membrane growth initiation sites in Rhodopseudomans sphaeroides were compared to those of intracytoplasmic photosynthetic membranes. In sucrose gradients, these membrane growth sites sediment more slowly than intracytoplasmic membrane-derived chromatophores and form an upper pigmented band. Cytochromes c1, c2, b561, and b566 were demonstrated in the upper fraction by redox potentiometry; c-type cytochromes were also detected electrophoretically. Signals characteristic of light-induced reaction center bacteriochlorophyll triplet and photooxidized reaction center bacteriochlorophyll dimer states were observed by EPR spectroscopy but the Rieske iron-sulfur signal of the ubiquinol-cytochrome c2 oxidoreductase was present at a 3-fold reduced level on a reaction center basis in comparison to chromatophores. Flash-induced absorbance measurements of the upper pigmented fraction demonstrated reaction center primary and secondary semiquinone anion acceptor signals, but cytochrome b561 photoreduction and cytochrome c1/c2 reactions occurred at slow rates. This fraction was enriched approximately 2- and 4-fold in total b- and c-type cytochromes, respectively, per reaction center over chromatophores, but photoreducible b-type cytochrome was lower. Measurements of respiratory activity indicated a 1.6-fold higher level of succinate-cytochrome c oxidoreductase/reaction center than in chromatophores, but the apparent turnover rates in both preparations were low. Overall, the results suggest that complete cycles of rapid, light-driven electron flow do not occur merely by introduction of newly synthesized reaction centers into respiratory membrane, but that subsequent synthesis and assembly of appropriate components of the ubiquinol-cytochrome c2 oxidoreductase is required.  相似文献   

7.
Cells of Rhodopseudomonas spheroides, strains R-26 or GVP, were grown photosynthetically, disrupted and two particulate fractions separated by sucrose-density-gradient centrifugation. The upper particulate fraction, enriched in bacteriochlorophyll, was identified as containing the chromatophores; the lower particulate fraction had the characteristics of the cell envelope. The two fractions differed in cytochrome content and cytochrome spectra. Ferrochelatase was found almost exclusively in the chromatophore fraction and was located on the outer face of the chromatophores, i.e. in contact with the cytosol in intact cells. The addition of 59FeCl3 to cells growing in low-iron media resulted in labelling of the protohaem fraction (probably arising from cytochrome b) of the membranes. The specific radioactivity of the haem of the chromatophores rose more rapidly than that of the envelope fraction and then after 2 h declined to approximately the same value, suggesting that haems of the chromatophore may act as precursors of haem of the envelope.  相似文献   

8.
A method for implanting exogenous membrane proteins into recipient hepatoma cells is described. Red cell band 3 and Sendai virus envelope proteins HN and F were extracted from their respective sources and purified by centrifugation to equilibrium through sucrose step gradients in the presence of octyl-beta-D-glucopyranoside. 0.05-0.15 micron vesicles were formed by adding lipid to combined detergent solubilized, isolated membrane proteins and removing detergent by dialysis. The vesicles were hybrid band 3-Sendai envelope vesicles and not a mixture of two distinct vesicle types as judged by (1) the ability of Sendai specific antibody to immunoprecipitate greater than 99% of band 3 from vesicle suspensions and (2) comigration of band 3 and Sendai envelope proteins on isopyknic sucrose density gradients. The hybrid vesicles (virosomes) were not fusogenic but did bind to cultured hepatoma cells in the cold. Subsequent treatment of virosomes absorbed onto cultured cells with polyethylene glycol resulted in a stable association of 2-10% of added band 3 and Sendai envelope proteins with the cells. Efficient transfer of virosome-associated band 3 to the cells was dependent on both lipid and Sendai envelope proteins. Fluid phase marker transfer, immunofluorescence, and protease digestion experiments demonstrate that the majority of the virosomes were implanted into recipient hepatoma membranes and not simply adsorbed onto their surface or immediately endocytosed. The hybrid membrane protein-viral envelope vesicles thus offer an efficient means for insertion of foreign proteins into the membranes of recipient cultured cells.  相似文献   

9.
Isolation of highly purified membrane fractions from phototrophically grown Rhodospirillum rubrum was achieved by velocity and isopyknic sedimentation under carefully controlled ionic conditions. Bacteriochlorophyll-rich and succinic dehydrogenase-rich chromatophores that were essentially devoid of contamination by non-chromatophore protein were separated from a denser fraction in extracts disrupted in a French pressure cell. Highly purified chromatophores and a nearly photopigment-free envelope fraction were also obtained from cells lysed by treatment with ethylenediaminetetraacetate-lysozyme-Brij 58. After lysis with lysozyme and ethylenediaminetetraacetate alone, about 50% of the total photosynthetic pigment was released in chromatophores similar to those isolated by the above procedures. Chromatophores prepared by each method were found to have very similar near-infrared absorption spectra, overall chemical composition, equilibrium buoyant densities in CsCl, and protein patterns in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein profiles of the dense, outer membrane-rich fractions were different from those of the chromatophores. The release of much of the photosynthetic apparatus as discrete chromatophores is osmotically lysed extracts necessitates a reevaluation of the concept that isolated chromatophores arise only from mechanical comminution of a larger membrane structure.  相似文献   

10.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromotophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

11.
Previous pulse-chase studies have shown that bacteriochlorophyll a-protein complexes destined eventually for the photosynthetic (chromatophore) membrane of Rhodopseudomonas sphaeroides appear first in a distinct pigmented fraction. This rapidly labeled material forms an upper band when extracts of phototrophically grown cells are subjected directly to rate-zone sedimentation. In the present investigation, flash-induced absorbance changes at 605 nm have demonstrated that the upper fraction is enriched two-fold in photochemical reaction center activity when compared to chromatophores; a similar enrichment in the reaction center-associated B-875 antenna bacteriochlorophyll complex was also observed. Although b- and c-type cytochromes were present in the upper pigmented band, no photoreduction of the b-type components could be demonstrated. The endogenous c-type cytochrome (Em = +345 mV) was photooxidized slowly upon flash illumination. The extent of the reaction was increased markedly with excess exogenous ferrocytochrome c but only slightly in chromatophores. Only a small light-induced carotenoid band shift was observed. These results indicate that the rapidly labeled fraction contains photochemically competent reaction centers associated loosely with c-type and unconnected to b-type cytochrome. It is suggested that this fraction arises from new sites of cytoplasmic membrane invagination which fragment to form leaky vesicles upon cell disruption.  相似文献   

12.
The effect of tris(hydroxymethyl)aminomethane (Tris) buffer on outer membrane permeability was examined in a smooth strain (D280) and in a heptose-deficient lipopolysaccharide strain (F515) of Escherichia coli O8. Tris buffer (pH 8.00) was found to increase outer membrane permeability on the basis of an increased Vo of whole-cell alkaline phosphatase activity and on the basis of sensitivity to lysozyme and altered localization pattern of alkaline phosphatase. The Tris buffer-mediated increase in outer membrane permeability was found to be dependent upon the extent of exposure to and concentration of the Tris buffer. The Tris buffer effects were demonstrated not to be due to allosteric activation of cell-associated alkaline phosphatase and were specific for Tris buffer. Exposure of cells to Tris resulted in the release of a limited amount of cell envelope component. Investigators utilizing Tris buffer are cautioned that Tris is not physiologically inert and that it may interact with the system under investigation.  相似文献   

13.
The inner or cytoplasmic membrane fraction of the cell envelope of Escherichia coli was isolated by isopycnic centrifugation on sucrose gradients. The membrane proteins were analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels (8.5%), and up to 56 bands were resolved. Different preparations gave very similar patterns of proteins. Succinate dehydrogenase mutants (sdh) were isolated which could not grow on succinate minimal medium, although growth on fumarate was unimpaired. The protein patterns of inner membrane preparations from sdh amber mutants were compared with the wild type, and one major band was greatly reduced in the mutants. This component, which represented approximately 5% of the inner membrane protein, was restored by introducing an amber suppressor gene (supU), which also restored the Sdh(+) phenotype. The band corresponded to a protein with a molecular weight of 67,000 daltons, which is close to that for the large subunits of the succinate dehydrogenases of Rhodospirillum rubrum and beef heart mitochondria.  相似文献   

14.
1. A comparison was made of two methods for estimating the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Illuminated chromatophores generated a potential that is apparently much larger when estimated on the basis of the red-band shift of carotenoids rather than from the extent of uptake of the permeant SCN- ion. 2. In contrast, when the chromatophores were oxidizing NADH or succinate the uptake of SCN- indicated a larger membrane potential than was estimated from the carotenoid band shift. 3. The extent of SCN- uptake and the carotenoid-band shift respond differently to changes in the ionic composition of the reaction medium. 4. The effects of antimycin on the carotenoid band shift and SCN- uptake are reported. 5. It is concluded that the carotenoid band shift and the uptake of SCN- are responding to different aspects of the energized state.  相似文献   

15.
To test the predictions of the chemiosmotic hypothesis, it is essential to have sensitive and accurate measures of the aqueous volume and pH within membrane compartments. One unique feature of the present investigation is the application of electron spin resonance probes to determine internal aqueous volume and pH changes in bacterial chromatophores under virtually identical conditions. Volumes of the chromatophores ranged from 6 to 16 microliter/mg bacteriochlorophyll among different preparations, and were sensitive to the osmolarity of the suspending buffer. pH gradients reached two units in illuminated chromatophores as determined with ESR methods, and increased when KCl and valinomycin were added to the assay. Measurements with the fluorescent dye 9-amino-acridine yielded similar pH gradients, provided that an operational vesicle volume, which corrected for the binding of the dye to the membrane, was used in the calculation. The sensitivity of the ESR method allowed the measurement of pH gradients resulting from only a few light flashes. A plot of pH gradients versus number of flashes was linear up to about 30 flashes, and intercepted the origin. This result is consistent with proton release into the bulk aqueous phase after only a single light flash. This ability to measure small pH gradients offers new opportunities for the study of energy-transducing mechanisms.  相似文献   

16.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

17.
Summary Rhodospirillum rubrum, a photosynthetic bacterium, contains many photosynthetic vesicular membranous structures called chromatophores. The organism contains a 55 kb specific plasmid which is essential for photosynthesis, but the exact relationship between the chromatophore and the plasmid is uncertain. In this study we examined the precise localization of the plasmids, especially in relation to the chromatophores. Fluorescence in situ hybridization indicated that there are several copies of the plasmid per cell and that some plasmids are localized close to the cellular envelope. In situ hybridization at the electron-microscopic level further revealed that the plasmid localized to the periphery of the chromatophore close to the envelope. Moreover, when the chromatophore fraction was purified from cells, the plasmid DNA was observed as a cluster around the chromatophore vesicles. The assembly of the plasmid and chromatophore may be related to chromatophore formation by invagination of cell membrane.  相似文献   

18.
The separation of membrane fragments was investigated in extracts of phototropically grown Rhodopseudomonas sphaeroides to determine if the plasma membrane contains discrete regions. A highly purified fraction of bacteriochlorophyll alpha-deficient membrane fragments was isolated by differential centrifugation, chromatography on Sepharose 2B, reaggregation, and isopycnic sedimentation on sucrose gradients. Significant levels of b- and c-type cytochromes and succinate dehydrogenase were demonstrated in the isolated membrane fragments and their appearance in electron micrographs, their polypeptide profile in dodecyl sulfate-polyacrylamide gel electrophoresis, and overall chemical composition were essentially identical to a similar fraction isolated from aerobically grown cells. Their polypeptide profiles were distinct from those of the intracytoplasmic chromatophore and outer membranes, and on the basis of bacteriochlorophyll content the phototrophic fraction was contaminated with chromatophores by less than 9%. The membrane fragments contained no diaminopimelic acid or glucosamine. It is condluded that the membrane fragments isolated from phototrophically growing Rp. sphaeroides have arisen from photosynthetic pigment-depleted regions of the plasma membrane structurally and functionally differentiated from the intracytoplasmic chromatophore membrane. These regions represent conserved chemotrophic cytoplasmic membrane whose synthesis continues under photoheterotrophic conditions.  相似文献   

19.
The phototrophic purple sulfur bacterium Thiopedia rosea forms multicellular, gas-vacuolate, regular, flat aggregates (platelets, sheets) held together by slime. Platelets found in eutrophic water consisted of slime (85% of the total wet volume) and 16 cells, while the gas-filled vacuole occupied 44% of the volume of a single wet cell. Individual platelet cells contained central spindle-shaped gas vesicles (which together constitute the cell's gas vacuole), intracytoplasmic membrane vesicles (chromatophores), and peripheral sulfur globules. Cells were surrounded by a Gram-negative type cell envelope and were connected to neighboring cells of the same platelet by mostly unstructured slime. Cells contained detectable amounts of magnesium, phosphorus, sulfur, and potassium as determined by wavelength-dispersive X-ray microanalysis. The large size and relatively low slime density of the platelet, as well as the flat shape, could greatly decrease platelet sedimentation and so stabilize the position of T. rosea within its water column.  相似文献   

20.
Methane-oxidizing bacteria, including Methylomicrobium album BG8, form an intracytoplasmic membrane in addition to the cytoplasmic and outer membranes of the cell envelope. Techniques to isolate the intracytoplasmic membrane of M. album BG8 were developed. An intracytoplasmic membrane fraction was separated from a cell envelope fraction on the basis of sedimentation velocity in sucrose density gradients. Proteins associated with the particulate methane monooxygenase were found in both membrane fractions. Received: 27 July 1999 / Accepted: 30 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号