首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kost;l V 《Cryobiology》1993,30(5):524-531
Supercooling point (SCP) values and cold-hardiness were measured in individual ontogenetic stages of Delia radicum (Diptera:Anthomyiidae) in various physiological states (winter diapause, summer quiescence, and normal development). Winter diapause-destined mature third-instar larvae had a lower SCP (-9.9 degrees C) than their nondiapause counterparts (-5.2 degrees C), and more of them survived exposure to -10 degrees C for 5 h to pupariation and adult emergence. Values of SCPs were equal in both diapause and nondiapause states of prepupal and pupal stages. The lowest SCP (ca. -20 degrees C) was found in the stage of phanerocephalic pupa (PCP) regardless of the physiological state. The cold-hardiness of PCP corresponded with a low SCP value only in diapausing pupae stored for 80 days at 3 degrees C and in pupae which had terminated their diapause and whose further development was inhibited by storage at low temperatures (3 degrees C). Such pupae survived exposure to temperatures close to their SCP (14 days at -17 degrees C). However, this high cold-hardiness was only acquired after some time and/or exposure to 3 degrees C, as the PCP at the beginning of diapause showed significantly impaired cold-hardiness despite the fact that their SCP was low. The cold-hardiness of nondiapausing PCP did not correspond at all to that of low SCP, as no pupa survived the exposure to -17 degrees C for 1 day; survival rates at temperatures of -13.5 and -10 degrees C were also remarkably lower than those in diapausing pupae. Cold-hardiness in D. radicum was closely connected with the diapause syndrome but the changes in SCP value corresponded rather with the ontogeny of this insect. Copyright 1993, 1999 Academic Press.  相似文献   

2.
During May 1997 thermal tolerance, supercooling point (SCP), low and high temperature survival, and desiccation resistance were examined in field-fresh Embryonopsis halticella Eaton larvae from Marion Island. SCPs were also examined in acclimated larvae, larvae starved for seven days, larvae within their leaf mines, and in larvae exposed to ice crystals. Field-fresh larvae had a critical minimum temperature (CT(Min)) and critical maximum temperature (CT(Max)) of 0 degrees C and 39.7 degrees C, respectively. Mean SCP of field-fresh caterpillars was -20.5 degrees C and this did not change with starvation. Field-fresh larvae did not survive freezing and their lower lethal temperatures (70% mortality below -21 degrees C) and survival of exposure to constant low temperatures (100% mortality after 12hrs at -19 degrees C) indicated that they are moderately chill tolerant. SCP frequency distributions were unimodal for field-fresh larvae, but became bimodal at higher acclimation temperatures. Contact with ice-crystals caused an increase in SCP (-6.5 degrees C), but contact with the host plant had less of an effect at higher subzero temperatures. It appears that the remarkable desiccation resistance of the larvae is selected for by the absence of a boundary layer surrounding their host plant, caused by constant high winds. This suggests that the low SCPs of E. halticella larvae may have evolved as a consequence of pronounced desiccation resistance.  相似文献   

3.
The sub-Antarctic beetle Hydromedion sparsutum (Coleoptera, Perimylopidae) is common locally on the island of South Georgia where sub-zero temperatures can be experienced in any month of the year. Larvae were known to be weakly freeze tolerant in summer with a mean supercooling point (SCP) around -4 degrees C and a lower lethal temperature of -10 degrees C (15min exposure). This study investigated the effects of successive freezing exposures on the SCP and subsequent survival of summer acclimatised larvae. The mean SCP of field fresh larvae was -4.2+/-0.2 degrees C with a range from -1.0 to -6.1 degrees C. When larvae were cooled to -6.5 degrees C on 10 occasions at intervals of 30min and one and four days, survival was 44, 70 and 68%, respectively. The 'end of experiment' SCP of larvae surviving 10 exposures at -6.5 degrees C showed distinct changes and patterns from the original field population depending on the interval between exposure. In the 30min interval group, most larvae froze between -6 and -8 degrees C, a depression of up to 6 degrees C from the original sample; all larvae were dead when cooling was continued below the SCP to -12 degrees C. In the one and four day interval groups, most larvae froze above -6 degrees C, showing no change as a result of the 10 exposures at -6.5 degrees C. As with the 30min interval group, some larvae froze below -6 degrees C, but with a wider range, and again, all were dead when cooled to -12 degrees C. However, in the one and four day interval groups, some larvae remained unfrozen when cooled to -12 degrees C, a depression of their individual SCP of at least 6 degrees C, and were alive 24h after cooling. In a further experiment, larvae were cooled to their individual SCP temperature at daily intervals on 10 occasions to ensure that every larva froze every day. Most larvae which showed a depression of their SCP of 2-4 degrees C from their day one value became moribund or died after six or seven freezing events. Survival was highest in larvae with SCPs of -2 to -3 degrees C on day one and which froze at this level on all 10 occasions. The results indicate that in larvae in which the SCP is lowered following sub-zero exposure, the depression of the SCP is greatest in individuals that do not actually freeze. Further, the data suggest that after successive frost exposures in early winter the larval population may become segregated into two sub-populations with different overwintering strategies. One group consists of larvae that freeze consistently in the temperature range from -1 to -3 degrees C and can survive multiple freeze-thaw cycles. A second group with lower initial SCPs (around -6 degrees C), or which fall to this level or lower (down to -12 degrees C) after freezing on one or more occasions, are less likely to freeze through extended supercooling, but more likely to die if freezing occurs.  相似文献   

4.
Daily changes in microclimate temperature and supercooling point (SCP) of Collembola were measured during summer at Cape Hallett, North Victoria Land, Antarctica. Isotoma klovstadi and Cryptopygus cisantarcticus (Isotomidae) showed bimodal SCP distributions, predominantly in the high group during the day and in the low group during the night. There were no concurrent diurnal changes in water content or haemolymph osmolality. By contrast, Friesea grisea (Neanuridae) had a unimodal distribution of SCPs that was invariant between daytime and nighttime. Isotoma klovstadi collected foraging on moss had uniformly high SCPs, which shifted towards the low group when the animals were starved for 2-8 h. When I. klovstadi was acclimated for five days with lichen or algae, SCPs were higher than if they were supplied with moss, while those that were starved (with free water or 100% relative humidity) displayed a trimodal SCP distribution. A variety of pre-treatments, including cold, heat, desiccation and slow cooling were ineffective at inducing SCP shifts in C. cisantarcticus or I. klovstadi. It is postulated that behavioural avoidance of low temperatures by vertical migration may be key in I. klovstadi's short-term survival of nighttime temperatures. These data suggest that the full range of thermal responses of Antarctic Collembola is yet to be elucidated.  相似文献   

5.
The ectoparasitoid Habrobracon hebetor (Say) attacks stored-product infesting pyralid moths that are able to overwinter under extremely cold conditions. The extent to which H. hebetor can withstand these conditions is not known, but has important implications for the ability of H. hebetor to provide long-term suppression of these pests in temperate climates. We investigated basic cold hardiness aspects of a mutant eye-color strain of H. hebetor. Feeding larvae and adults of H. hebetor had supercooling points (SCPs) at temperatures higher than those of eggs and pupae. Mean SCPs of females and males were equivalent, as were those of naked and silk-encased pupae. Feeding on honey prior to being subjected to low temperatures significantly increased the SCP of adult females by approximately 8 degrees C. Mortality of pupae and adults increased significantly whenever the temperature dropped below the mean SCP, indicating that H. hebetor does not tolerate freezing. For pupae and adults exposed to -12 and -5 degrees C, the hourly mortality rate increased with time of exposure. Pupae and adults exposed to -12 degrees C for different time intervals showed high mortality after only 1d of exposure. At -5 degrees C, none survived 12d of exposure. A better understanding of how well this parasitoid tolerates low temperatures will be useful in evaluating its potential as a biological control agent of stored-product moths in temperate regions.  相似文献   

6.
Effects of 12 biotic and abiotic factors on the freezing point of the sub-Antarctic springtail, Tullbergia antarctica, were investigated. Repeated cooling of individual springtails five times resulted in very similar freezing points suggesting that ice nucleation in this freeze-susceptible species is likely to be initiated by intrinsic factors rather than being a stochastic event. Mean supercooling point (SCP) was influenced by cooling protocol, showing a linear increase in mean SCP with cooling rates from 8 to 0.1 degrees Cmin(-1). However, the opposite effect (decreasing SCP) was seen with slower cooling. Slower rates may be ecologically realistic and allow time for appropriate physiological and biochemical changes. Feeding and food presence in the gut had no effect on SCP, and there was no correlation between the ice nucleating activity of bacteria isolated from the guts and the whole springtail SCP. Habitat altitude and diurnal light and temperature regimes also had no effect on SCP. There was no correlation between the cryoprotectant concentration of fresh animals and their SCP, but experimental desiccation resulted in increased osmolality and decreased SCP, although with considerable individual variation. The most significant influence on SCP was associated with ecdysis. As springtails cease feeding for a period either side of ecdysis, shedding the entire gut lining, moulting may be an efficient mechanism of clearing the gut of all ice nucleating material. This previously unrecognised relationship between ecdysis, cold tolerance and seasonal survival tactics may play an important role in over-winter survival of some arthropods.  相似文献   

7.
Supercooling points (SCP) of adult Diamesa mendotae Muttkowski, 1915 (Diptera: Chironomidae) were determined at 3, 5, 9, 12 and 17 days post-collection. Supercooling points were recorded using surface contact thermometry and a cooling rate of ca. 1°C min?1. Female SCPs averaged ?22.81, ?23.76, ?23.85, ?23.65, and ?20.87°C on each date post-collection and did not differ significantly. Male SCPs were statistically similar and averaged ?21.75, ?23.53, ?23.68, ?23.66, and ?22.92°C on each date post-collection. Paired comparisons of female/male SCPs on each date post-collection did not show significant differences over time. The overall mean SCP of D. mendotae (?23.05°C) is substantially lower than values of ?5.3°C and ?5.7°C published for adults and larvae of Belgica antarctica Jacobs 1900 collected at Palmer Station (Antarctica) and ?14.2°C for larvae of Paraclunio alaskensis Coquillett 1900 collected at Vancouver Island, British Columbia. In addition, the SCP of this species appears to be lower than that of other winter-active insect species reported in the literature. Although no adults survived after the SCP was recorded, further studies are necessary to determine if D. mendotae is a freeze-intolerant insect. Nevertheless, our results suggest that a low SCP could be used as a mechanism to facilitate emergence and adult activity of this species during winter conditions.  相似文献   

8.
The ice nucleation (IN) gene inaA of epiphytic Erwinia (Pantoea) ananas IN10 was transformed into Enterobacter cloacae WBMH-3-CMr originated from the faeces of silkworms. The transformant designated as Ent. cloacae WBMH-3-CMr(pICE6S13) exhibited IN activity, unlike the parent strain. The transgenic strain was ingested by mulberry pyralid larvae, fed on detached mulberry leaves, and the supercooling capacity and cold hardiness of these larvae were examined. The mean supercooling point (SCP) of the larvae ingesting the transgenic strain was - 3.3 degrees C, 8 degrees C higher than that of larvae treated with distilled water (control) and 1.5 C higher than an ice nucleation active (INA) strain of Erw. ananas. The SCPs of the larvae were stably maintained over the 9 d after ingestion. The maintenance of these high SCPs was due to transgenic Ent. cloacae having a more stable and efficient gut colonization than Erw. ananas, which is identified by the distribution of a narrower range of SCPs (-2 to -5 degrees C) in larvae treated with the transgenic stain. Furthermore, most of the larvae ingesting the transgenic strain froze and died when they were exposed to cold conditions of -5 degrees C for 18 h, 3 or 7 d after ingestion. In contrast, most of the larvae ingesting no bacterium did not die under similar conditions. On the other hand, the growth ability of Ent. cloacae WBMH-3-CMr on mulberry leaves tended to be lower than that of epiphytic Erw. ananas, as assayed by pot tests. These findings would expand the possibility of biological control using INA bacteria since Ent. cloacae would harbour a broader host (insect) range for gut colonization and a smaller affinity to plants to benefit from prevention of plant frost injury.  相似文献   

9.
Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in preparing animals in the field to withstand conditions that they will encounter during winter.  相似文献   

10.
Cold-hardy insects overwinter by one of two main strategies: freeze tolerance and freeze avoidance by supercooling. As a general model, many freeze-tolerant species overwinter in extreme climates, freeze above -10 degrees C via induction by ice-nucleating agents, and once frozen, can survive at temperatures of up to 40 degrees C or more below the initial freezing temperature or supercooling point (SCP). It has been assumed that the SCP of freeze-tolerant insects is unaffected by the freezing process and that the freeze-tolerant state is therefore retained in winter though successive freeze-thaw cycles of the body tissues and fluids. Studies on the freeze-tolerant larva of the hoverfly Syrphus ribesii reveal this assumption to be untrue. When a sample with a mean 'first freeze' SCP of -7.6 degrees C (range of -5 degrees C to -9.5 degrees C) were cooled, either to -10 degrees C or to their individual SCP, on five occasions, the mean SCP was significantly depressed, with some larvae subsequently freezing as low as -28 degrees C. Only larvae that froze at the same consistently high temperature above -10 degrees C were alive after being frozen five times. The wider occurrence of this phenomenon would require a fundamental reassessment of the dynamics and distinctions of the freeze-tolerant and freeze-avoiding strategies of insect overwintering.  相似文献   

11.
To investigate cold hardiness of Eurygaster integriceps Put, super cooling points of whole bodies during December to March 2006-2007 were measured on samples collected from altitude of Ghara-aghaj varamin-Iran. In addition, the lower lethal temperature (LLT) was determined for adult insect. The super cooling points were observed about -5 in cold months. Since the minimum temperature under natural condition is reached to-7 degreesC or lower in January and LLT99 (-21.65 degrees C), --11 degreesC lower than their minimum SCP (-10.5 degrees C), therefore I concluded that adult insects are freeze tolerant. Furthermore, super cooling points of different sex, weight and attitude were not significantly different. Freeze tolerance in these insects may be a strategy to provide protection from long-term exposures to ice crystals in microhabitat in alititude.  相似文献   

12.
The purpose of the present study was to evaluate whether AFPs protect the heart from freezing and improve survival and viability in subzero cryopreservation. Hearts were subject to 5 preservation protocols; University of Wisconsin solution (UW) at 4 degrees C, UW at -1.3 degrees C without nucleation, UW at -1.3 degrees C with nucleation, UW AFP I (15 mg/cm(3)) at -1.3 degrees C with nucleation, and in UW AFP III (15 mg/cm(3)) at -1.3 degrees C with nucleation. Hearts were preserved for 24, 28, and 32 h, rewarmed and connected to the working isolated perfusion system. Data [heart rate (HR), coronary flow (CF), and developed pressure (dP)] was collected 30 and 60 min after reperfusion. Hearts preserved at -1.3 degrees C without AFPs froze, while hearts preserved with AFP did not freeze when nucleation was initiated and survived. Survival and dP of hearts preserved for 24h at -1.3 degrees C using AFP III was better than those preserved at 4 degrees C, (dP; 1.4 vs. 0.8, p<0.05). Four of six hearts and six of six hearts died when preserved at 4 degrees C for 28 and 32 h, respectively, all of the hearts that were preserved at -1.3 degrees C with or without AFPs survived after 28 h (n=18) and 32 h (n=18). CF was higher in UW -1.3 degrees C group without attempted nucleation than in AFP I and AFP III groups after 28 and 32 h (3.4 vs. 1.7, p<0.05, and 3.4 vs. 1.7, p<0.05, respectively). In conclusion, AFPs were found to protect the heart from freezing and improve survival and dP (AFP III) in prolonged subzero preservation.  相似文献   

13.
K Watanabe  M Sato 《Cryobiology》1999,38(4):281-289
To evaluate the suitability of using ice nucleation active (INA) bacteria for the biological control of insect pests, the supercooling point (SCP) of larvae of mulberry pyralid, Glyphodes duplicalis, and silkworm, Bombyx mori, ingesting INA strains of Erwinia (Pantoea) ananas and Pseudomonas syringae was determined. Mean SCP of the guts of silkworm larvae ingesting INA strains of E. ananas ranged from -2.5 to -2.8 degrees C, being 5 degrees C higher than that in control treatments. Similarly, mean SCP of mulberry pyralid larvae ingesting INA strain of E. ananas, which can grow well in the gut, was -4.7 degrees C at 3 days after treatment, being 6.5 degrees C higher than that in control treatments. On the other hand, mean SCP of the larvae-ingesting INA strain of P. syringae, which cannot grow in the gut, was -9.0 degrees C at 3 days after treatment, rising by only 2.5 degrees C higher than that in the control treatments. In addition, more than 80% of the larvae of mulberry pyralid ingesting the INA strain of E. ananas froze and eventually died when exposed to -6 degrees C for 18 h, while only 36% of the larvae ingesting the INA strain of P. syringae, or approximately 20% of the control larvae, froze and died. Thus, the gut colonization by INA strains of E. ananas reduced remarkably the cold hardiness of the insects. These findings suggest that INA strains of E. ananas could be effective as a potential biological control agent of insect pests.  相似文献   

14.
The extent to which phenotypic plasticity might mediate short-term responses to environmental change is controversial. Nonetheless, theoretical work has made the prediction that plasticity should be common, especially in predictably variable environments by comparison with those that are either stable or unpredictable. Here we examine these predictions by comparing the phenotypic plasticity of thermal tolerances (supercooling point (SCP), lower lethal temperature (LLT), upper lethal temperature (ULT)), following acclimation at either 0, 5, 10 or 15 degrees C, for seven days, of five, closely-related ameronothroid mite species. These species occupy marine and terrestrial habitats, which differ in their predictability, on sub-Antarctic Marion Island. All of the species showed some evidence of pre-freeze mortality (SCPs -9 to -23 degrees C; LLTs -3 to -15 degrees C), though methodological effects might have contributed to the difference between the SCPs and LLTs, and the species are therefore considered moderately chill tolerant. ULTs varied between 36 degrees C and 41 degrees C. Acclimation effects on SCP and LLT were typically stronger in the marine than in the terrestrial species, in keeping with the prediction of strong acclimation responses in species from predictably variable environments, but weaker responses in species from unpredictable environments. The converse was found for ULT. These findings demonstrate that acclimation responses vary among traits in the same species. Moreover, they suggest that there is merit in assessing the predictability of changes in high and low environmental temperatures separately.  相似文献   

15.
The aim of the present study was to elaborate cryopreservation methods for ex situ conservation of tench. Success of cryopreservation was tested during two series of experiments. The first set of experiments studied the effects of two types of cryoprotectants (DMSO and a combination of DMSO with propanediol at ratio 1:1) at concentrations of 8 and 10% and three different equilibration times in two different immobilization solutions (IS) (Kurokura 180 and Kurokura) before freezing (0.0, 2.0 and 4.0h after T(0)). The K4 cooling programme was used to freeze 1ml of cryoextended sperm using 1.8ml cryotubes. Main monitored parameter was hatching rate after using of cryopreserved sperm. The second set of experiments studied the volume effect of 0.5, 1 and 5ml straws and compared these with 1.8ml cryotubes as well as the effect of the cooling programme (K4 and L1). Following the results of the first study, a combination of DMSO and propanediol (ratio 1:1) at concentration of 10% was added to extended sperm in Kurokura 180 IS. Main monitored parameter was hatching rate after using cryopreserved sperm, supplementary parameters were sperm velocity and motility percentage assessed at 10s post-activation. Sperm was collected directly into IS and stored at 4 degrees C for 2.5h. Thereafter were sperm samples pooled, equlibred in IS (first set of experiments) or directly mixed with cryoprotectants (DMSO or a mixture of DMSO with propanediol at ratio 1:1) and transferred to 1.8ml cryotubes or straws (0.5, 1 and 5ml). Then the cryotubes/straws were directly transferred to pre-programmed PLANER Kryo 10 series III and cooled using two different cooling programmes including a slow cooling programme (a) named K4 (from +4 to -9 degrees C at a rate of 4 degrees Cmin(-1) and then from -9 to -80 degrees C at a rate of 11 degrees Cmin(-1)) and a rapid cooling programme (b) named L1 (directly from +4 to -80 degrees C at a rate of 20 degrees Cmin(-1)). Both slow (K4) and rapid (L1) cooled samples were held 6min at -80 degrees C. Finally, samples were transferred into liquid N(2). The frozen spermatozoa were thawed in a water bath (40 degrees C) according to the frozen volume and checked for fertilization and hatching rates. Percentage of sperm motility and sperm velocity were measured using video recorded frames. ANOVA showed a significant influence of frozen and fresh sperm in all treatments. The hatching rates of 33.8% were obtained when sperm was equilibrated for 0h before freezing in IS of Kurokura 180 and frozen with a 10% of mixture 1:1 of DMSO and propanediol into straws of 5ml and cooled using program L1. The velocity of frozen-thawed spermatozoa ranged from 31 to 46microms(-1) and in post-thawed sperm was not significantly different according to frozen sperm volume, but a higher velocity was obtained when sperm was fast frozen using programme L1. A large volume of frozen sperm could reveal the best procedure for freezing, but also for simulating methods of artificial propagation for future practical use of frozen tench sperm at a large scale.  相似文献   

16.
ABSTRACT. Supercooling points (SCP) and low temperature tolerance were determined for larval, pupal and adult stages of Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae). No stage tolerates tissue-freezing. Ontogenetic changes in SCP profiles are similar for comparable developmental stages of diapause and non-diapause groups. Feeding larvae have SCPs near -7°C which decrease to -11°C in the postfeeding wandering phase of the final larval instar. The lowest SCPs are recorded for pupae at -23°C. The capacity to survive at -17°C varies with age of the diapausing pupae: 10-day-old pupae are less cold tolerant than pupae that have been in diapause for 45–80 days. Although the SCP of non-diapausing pupae is as low as in diapausing pupae, non-diapausing pupae are extremely sensitive to low temperature exposure and do not survive to adult eclosion when exposed to -17°C for as little as 20 min. The use of hexane to break pupal diapause has no effect on SCPs or low temperature tolerance.  相似文献   

17.
Paractora dreuxi displays distinct ontogenetic differences in thermal tolerance and water balance. Larvae are moderately freeze tolerant. Mean larval onset of chill coma was -5.1 degrees C, and onset of heat stupor was 35.5 degrees C. Larval supercooling point (SCP) was -3.3 degrees C with 100% recovery, although mortality was high below -4 degrees C. Starvation caused SCP depression in the larvae. Adults were significantly less tolerant, with critical thermal limits of -2.7 and 30.2 degrees C, no survival below the SCP (-9.6 degrees C), and no change in SCP with starvation. Moderate freeze tolerance in the larvae supports the contention that this strategy is common in insects from southern, oceanic islands. Fly larvae survived desiccation in dry air for 30 h, and are thus less desiccation tolerant than most other sub-Antarctic insect larvae. Water loss rates of the adults were significantly lower than those of the larvae. Lipid metabolism did not contribute significantly to water replacement in larvae, which replaced lost body water by drinking fresh water, but not sea water. Kelp fly larvae had excellent haemolymph osmoregulatory abilities. Current climate change has led to increased temperatures and decreased rainfall on Marion Island. These changes are likely to have significant effects on P. dreuxi, and pronounced physiological regulation in larvae suggests that they will be most susceptible to such change.  相似文献   

18.
The changes in morphology of Penicillium expansum Link and Phytophthora nicotianae Van Breda de Haan during freezing and thawing in a growth medium with and without the cryoprotective additive glycerol were examined with a light microscope fitted with a temperature-controlled stage. Viability of 0.5-1.0 mm diameter colonies of both fungi was determined after equivalent rates of cooling to -196 degrees C in the presence or absence of glycerol. In P. expansum shrinkage occurred in all hyphae at rates of cooling of less than 15 degrees C min-1; at faster rates intracellular ice nucleation occurred. The addition of glycerol increased the rate of cooling at which 50% of the hyphae formed intracellular ice from 18 degrees C min-1 to 55 degrees C min-1. This species was particularly resistant to freezing injury and recovery was greater than 60% at all rates of cooling examined. At rapid rates of cooling recovery occurred in hyphae in which intracellular ice had nucleated. In contrast, during the cooling of Ph. nicotianae in the growth medium, shrinkage occurred and no samples survived on thawing from -196 degrees C. However, on the addition of glycerol, shrinkage during freezing decreased and viable hyphae were recovered upon thawing; at rates of cooling over 10 degrees C min-1 the loss of viability was related to glycerol-induced osmotic shrinkage during cooling rather than to the nucleation of intracellular ice.  相似文献   

19.
The mold mite Tyrophagus putrescentiae (Shrank) is a common pest of stored food products. Until recently, commodity and facility treatments have relied on acaricides and fumigants to control this mite. However, T. putrescentiae will cause infestations in areas where acaricide or fumigant use may be restricted, prohibited, or highly impractical. Because temperature is an essential factor that limits the survival of arthropod species, extreme temperatures can be exploited as an effective method of control. Making low-temperature treatments reliable requires better temperature-time mortality estimates for different stages of this mite. This was accomplished by exposing a representative culture (eggs, nymphs, and adults) of noncold-acclimated T. putrescentiae to subfreezing temperatures to determine their supercooling points (SCPs), lower lethal temperatures (LLTs) and lethal times (LTimes) at set temperatures. The results indicate that the adult and nymphal stages of T. putrescentiae are freeze intolerant; based on 95% CIs, the adult LLT90 of -22.5 degrees C is not significantly different from the SCP of -24.2 degrees C and the nymphal LLT90 of -28.7 degrees C is not significantly different from the SCP of -26.5 degrees C. The egg stage seems to be freeze tolerant, with an LLT90 of -48.1 degrees C, significantly colder by approximately 13.5 degrees C than its SCP of -35.6 degrees C. The LTime demonstrates that 90% of all mite stages of T. putrescentiae can be controlled within commodity or packaged product by freezing to -18 degrees C for 5 h. By achieving the recommended time and temperature exposures, freezing conditions can be an effective way of controlling mites and reducing chronic infestations.  相似文献   

20.
The ice nucleation (IN) gene iceA of Erwinia ananas 110 was integrated into the chromosomes of two Enterobacter cloacae strains (Enc1.2022 and Enc1.181). These two newly derived transgenic strains, designated Enc2022-I and Enc181-I, respectively, possessed ice nucleation activity at -2.5 degrees C, significantly higher than their parent strains (active at approx -10 degrees C or lower). After ingesting these transgenic bacteria, the mean supercooling points (SCPs) of corn borer and cotton bollworm larvae were -3 to -4 degrees C, significantly higher than those of untreated controls. The SCPs remained significantly elevated over the 9-day period after ingestion, which matched well with the efficient gut colonization of the bacteria during this period. All treated larvae froze and eventually died after exposure for 6 h to a temperature of -7 degrees C, and more than 95% died after 12 h at -5 degrees C. In contrast, few or none of the untreated control larvae froze and died under the same conditions. Furthermore, the growth ability of these transgenic ice nucleation-active (INA) En. cloacae strains on corn leaves was reduced, compared to that of wild-type epiphytic E. ananas, as revealed by pot tests conducted in both greenhouse and outdoor conditions. The stable colonization in insect guts and their lower affinity to plants would make these transgenic INA bacteria useful as a novel tool for biological control of insect pests in agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号