首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
On the basis of the previous article (Morchio and Traverso [1999]), we discuss the possible interactions between the first proteic fragments developed in the hydrophobic layer made of hydrocarbons, which would have covered the surface of the primitive seas, and the nitrogenous bases, particularly the pyrimidinic ones, which would have found in such hydrophobic layer favourable conditions to their prebiotic synthesis. These interactions would have presumably brought, on the basis of the physicochemical laws, at the moment the only ones at work, to the linkage of various bases and so to the construction of the first nucleic acid chains (most likely RNA). Interestingly enough this result would have been obtained by inserting two more bases between those hydrogen bound to the amino acids and this might have been the ground for the future "triplets". These interactions might have been particularly significant because of two important consequences: the birth of a rough genetic code and the starting of interactions of the co-operative type between bases and amino acids that would have made the growth of both proteic and nucleic acid fragments easier and faster. We conclude that the development of the genetic code was neither a "frozen accident" nor an occurrence directed by any information flow.  相似文献   

4.
5.
The interaction of purine with DNA, tRNA, poly A, poly C, and poly A. poly U complex was investigated. In the presence of purine, the nucleic acids in coil form (such as denatured DNA, poly A and poly C in neutral solutions, or tRNA) have lower optical rotations. In addition, hydrodynamic studies indicate that in purine solutions the denatured DNA has a higher viscosity and a decreased sedimentation coefficient. These findings indicate that through interaction with purine, the bases along the poly-nucleotide chain are unstacked and are separated farther from each other, resulting in increased assymmetry (and possibly volume) of the whole polymer. Thus, the de-naturation effect of purine reported previously can be explained by this preferential interaction of purine with the bases of nucleic acids in coil form through a hydrophobic-costacking mechanism. Results from studies on optical rotation and helix-coil transition show that the interaction of purine is greater with poly A than with poly C. The influence of temperature, Mg++ concentration, ionic strength, and purine concentration on the effect of purine on nucleic acid conformation has also been investigated. In all these situations the unraveling of nucleic acid conformation occurs at much lower temperatures (20–40°C lower) in the presence of purine (0.2–0.6M).  相似文献   

6.
7.
8.
A polyacrylamide-gel-electrophoresis method has been developed that permits the analysis of conformational changes that occur during the thermal denaturation of macromolecules. A stable transverse temperature gradient was produced in an aluminium heating jacket clamped around a vertical polyacrylamide slab gel. After temperature equilibration, gels were loaded with either a layer of protein solution (20-200 micrograms/gel) or a solution of double-stranded DNA (20 micrograms/gel) and electrophoresis begun. At the end of the run the gels were stained and the effect of temperature on mobility observed. The technique proved informative both for the irreversible unfolding of proteins (Drosophila alcohol dehydrogenase and lactic acid dehydrogenase) and for a protein that was reversibly denatured by heat (beta-lactamase). In the latter case a clear transition between the native enzyme and a slower-migrating denatured state was observed. The patterns obtained were analogous to the type produced by the transverse-urea-gradient-electrophoretic method of Creighton [(1979) J. Mol. Biol. 129, 253-264]. The method also resolved a complex mixture of double-stranded-DNA restriction-digest fragments.  相似文献   

9.
10.
Inhibition of a DNA-helicase by peptide nucleic acids.   总被引:1,自引:1,他引:0  
  相似文献   

11.
12.
13.
Peptide nucleic acids (PNAs) and conjugates between oligonucleotides and cationic peptides possess superior potential for strand invasion at complementary sequences. We discovered that oligonucleotide-peptide conjugates and PNAs fall into three classes based on their hybridization efficiency; i) those complementary to inverted repeats within AT-rich region hybridize with highest efficiency; ii) those complementary to areas adjacent to inverted repeats or near AT-rich regions hybridize with moderate efficiency; and iii) those complementary to other regions do not detectably hybridize. The correlations between oligomer chemistry, DNA target sequence, and hybridization efficiency that we report here have important implications for the recognition of duplex DNA.  相似文献   

14.
Spin labeled nucleic acids.   总被引:2,自引:2,他引:0       下载免费PDF全文
Homopolyribonucleotides and E. coli DNA wer spin labeled with an iodoacetamide-nitroxide compound. The extent of labeling is highly dependent upon the nature of the base and the secondary structure of the nucleic acid. This spin label-polymer linkage is unstable at high temperatures and in phosphate buffers. In order to determine the effect of changes in the environment of nucleic acids on the esr signals of their attached spin labels, the polynucleotides were subjected to temperature and viscosity perturbations. An increase in temperature (T) affects a linear decrease in the anisotropy factor of the esr signal. The log tau (tau = correlation time) versus (1/T) profile is linear with a positive slope when the spin label is attached to single stranded polynucleotides but exhibits discontinuities at certain critical temperatures when attached to the duplexes poly (As-U) and poly (I-Cs). These critical temperatures are lower than the optical Tm. Logarithmic increase in viscosity was found to produce a linear increase in tau in aqueous sucrose solutions.  相似文献   

15.
16.
17.
Zajdela ascitic hepatoma cells are shown to take up pyrimidine bases at much lower rates than obtained in slices from normal rat liver. The rates of uptake of adenine and uridine by the Zajdela cells are, however, as high as in the slices. Like the slices, again, the Zajdela cells take up E. coli RNA and DNA at very low rates but, unlike the slices, thses cells degrade rapidly the RNA taken up. The Zajdela cells resemble parenchymal cell suspensions derived from normal rat liver in regard to the uptake of pyrimidine bases and the ability to degrade heterologous RNA.  相似文献   

18.
Complex formation between the side chain of arginine and nucleic acid bases has been investigated by proton magnetic resonance in dimethylsulfoxide. Simultaneous formation of two hydrogen bonds leads to a selectivity of arginine interaction towards cytosine and guanine. A comparison is made of the interaction of arginine side chain with nucleic acid bases, phosphate and carboxylate anions. It is shown that interaction between carboxylate and arginine is stronger than between phosphate and arginine. These results are discussed with respect to the selective recognition of nucleic acid bases by arginine side chains and by the arginyl-glutamyl ion pair which could form in proteins interacting with nucleic acids.  相似文献   

19.
A uniform notation and convention is suggested to describe the torsional angles in nucleic acids and their derivatives. The torsional angle χ, relating the stereochemistry of the base with respect to the sugar, shows more variation for the β-purine glycosides than for the β-pyrimidine glycosides. This variation is attributed to the fact that the β-purine derivatives may form intramolecular O(5′)-H…N(3) hydrogen bonding. The χ values for the α-purine and α-pyrimidine glycosides show preference for the –syn-clinal (or anti) conformation. The mode of puckering of the sugar also influences the χ value. The various possible conformations for the furanose ring are described by the torsional angles τ0 τ1, τ2, τ3, τ4, about the five ring bonds. From an analysis of the torsional angles (ω, ?, ψ, ψ′, ?′, ω′) about the sugar phosphate bonds in the x-ray structures of the known nucleosides, nucleotides, phosphodiesters, nucleic acids, and related compounds, and from a consideration of molecular models, it is found that the possible conformations for the backbone of helical nucleic acids is strikingly limited. Most importantly, the preferred conformation of the nucleotide unit in poly nucleotides and nucleic acids turns out to be the same as that found for the nucleotide in the crystal structure. It is observed that base “stacking” is a consequence of the restricted backbone conformation. The torsional angles are illustrated in the form of conformational “wheels”. Interrelation between the torsion angles about successive pairs of sugar-phosphate bonds are presented in the form of conformational maps: ω,?; ?,ψ; ψ.ψ′; ψ′,?′; ?′,ω′; ω′,ω. The ω′,ω map shows the perferred conformations about the inter-nucleotide bonds of right- and left-handed helices and the possible conformations of phosphodiesters. The preferred conformation of the pyrophosphate and triphosphate is that in which the phosphate oxygens display a staggered arrangement when viewed along the P–P axis. A plausible structure and conformation for the ATPM2? backbound complex is presented. This structure differs from that proposed by SzentGyorgi in that the metal (only transition metals are considered here) is not bound to the NH2 nitrogen of adenine, but rather is simultaneously bound to N(7) of the ring and three phosphates (α, β, γ), or N(7) of the ring and two phosphates (β, γ). The remaining metal coordination may be satisfied by solvent–metal or enzyme–metal bonds.  相似文献   

20.
Iodination of herpesvirus nucleic acids.   总被引:4,自引:1,他引:3       下载免费PDF全文
A simple method is described for the iodination of herpes simplex virus (HSV) DNA. The procedure involved synthesis of 125-I-labeled 5-iodo-dCTP which was subsequently used as a precursor for the in vitro repair synthesis of HSV DNA. Synthesis of 5-iodo-dCTP and purification from oxidation and reduction reagents, buffer salts, unreacted dCTP and Na125-I was accomplished in a single chromatographic step. It was possible to prepare 125-I-labeled HSV DNA in vitro with specific activities exceeding 10-8 counts/min/mu-g. The DNA prepared by this method reassociated with DNA extracted from HSV-infected HEp-2 cells but not with HEp-2 cell DNA. Iodinated HSV DNA was susceptible to S-1-endonuclease digestion once denatured but was resistant to digestion in the native form. This method was used to synthesize 125-I-labeled ribo-CTP (5-iodo-CTP) which was used to prepare cytomegalovirus-specific complementary RNA. The method should be of value in the preparation of viral probes and for use in autoradiography of viral nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号