首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
All mental representations change with time. A baseline intuition is that mental representations have specific values at different time points, which may be more or less accessible, depending on noise, forgetting processes, etc. We present a radical alternative, motivated by recent research using the mathematics from quantum theory for cognitive modelling. Such cognitive models raise the possibility that certain possibilities or events may be incompatible, so that perfect knowledge of one necessitates uncertainty for the others. In the context of time-dependence, in physics, this issue is explored with the so-called temporal Bell (TB) or Leggett–Garg inequalities. We consider in detail the theoretical and empirical challenges involved in exploring the TB inequalities in the context of cognitive systems. One interesting conclusion is that we believe the study of the TB inequalities to be empirically more constrained in psychology than in physics. Specifically, we show how the TB inequalities, as applied to cognitive systems, can be derived from two simple assumptions: cognitive realism and cognitive completeness. We discuss possible implications of putative violations of the TB inequalities for cognitive models and our understanding of time in cognition in general. Overall, this paper provides a surprising, novel direction in relation to how time should be conceptualized in cognition.  相似文献   

3.
4.
5.
Cognitive theory has decomposed human mental abilities into cognitive (sub) systems, and cognitive neuroscience succeeded in disclosing a host of relationships between cognitive systems and specific structures of the human brain. However, an explanation of why specific functions are located in specific brain loci had still been missing, along with a neurobiological model that makes concrete the neuronal circuits that carry thoughts and meaning. Brain theory, in particular the Hebb-inspired neurocybernetic proposals by Braitenberg, now offers an avenue toward explaining brain–mind relationships and to spell out cognition in terms of neuron circuits in a neuromechanistic sense. Central to this endeavor is the theoretical construct of an elementary functional neuronal unit above the level of individual neurons and below that of whole brain areas and systems: the distributed neuronal assembly (DNA) or thought circuit (TC). It is shown that DNA/TC theory of cognition offers an integrated explanatory perspective on brain mechanisms of perception, action, language, attention, memory, decision and conceptual thought. We argue that DNAs carry all of these functions and that their inner structure (e.g., core and halo subcomponents), and their functional activation dynamics (e.g., ignition and reverberation processes) answer crucial localist questions, such as why memory and decisions draw on prefrontal areas although memory formation is normally driven by information in the senses and in the motor system. We suggest that the ability of building DNAs/TCs spread out over different cortical areas is the key mechanism for a range of specifically human sensorimotor, linguistic and conceptual capacities and that the cell assembly mechanism of overlap reduction is crucial for differentiating a vocabulary of actions, symbols and concepts.  相似文献   

6.
7.
Associative learning plays a variety of roles in the study of animal cognition from a core theoretical component to a null hypothesis against which the contribution of cognitive processes is assessed. Two developments in contemporary associative learning have enhanced its relevance to animal cognition. The first concerns the role of associatively activated representations, whereas the second is the development of hybrid theories in which learning is determined by prediction errors, both directly and indirectly through associability processes. However, it remains unclear whether these developments allow associative theory to capture the psychological rationality of cognition. I argue that embodying associative processes within specific processing architectures provides mechanisms that can mediate psychological rationality and illustrate such embodiment by discussing the relationship between practical reasoning and the associative-cybernetic model of goal-directed action.  相似文献   

8.
Merlin Donald   《Journal of Physiology》2007,101(4-6):214-222
Human cognitive evolution is characterized by two special features that are truly novel in the primate line. The first is the emergence of "mindsharing" cultures that perform cooperative cognitive work, and serve as distributed cognitive networks. The second is the emergence of a brain that is specifically adapted for functioning within those distributed networks, and cannot realize its design potential without them. This paper proposes a hypothetical neural process at the core of this brain adaptation, called the "slow process". It enables the human brain to comprehend social events of much longer duration and complexity than those that characterize primate social life. It runs in the background of human cognitive life, with the faster moving sensorimotor interface running in the foreground. Most mammals can integrate events in the shorter time zone that corresponds to working memory. However, very few can comprehend complex events that extend over several hours (for example, a game or conversation) in what may be called the "intermediate" time zone. Adult humans typically live, plan, and imagine their lives in this time range, which seems to exceed the capabilities of our closest relatives, bonobos and chimpanzees. In summary, human cognition has both an individual and a collective dimension. Individual brains and minds function within cognitive-cultural networks, or CCNs, that store and transmit knowledge. The human brain relies on cultural input even to develop the basic cognitive capacities needed to gain access to that knowledge in the first place. The postulated slow process is a top-down executive capacity that evolved specifically to manage the cultural connection, and handle the cognitive demands imposed by increasingly complex distributed systems.  相似文献   

9.
After an introduction (1) the article analyzes the evolution of the embodied mind (2), the innovation of embodied robotics (3), and finally discusses conclusions of embodied robotics for human responsibility (4). Considering the evolution of the embodied mind (2), we start with an introduction of complex systems and nonlinear dynamics (2.1), apply this approach to neural self-organization (2.2), distinguish degrees of complexity of the brain (2.3), explain the emergence of cognitive states by complex systems dynamics (2.4), and discuss criteria for modeling the brain as complex nonlinear system (2.5). The innovation of embodied robotics (3) is a challenge of future technology. We start with the distinction of symbolic and embodied AI (3.1) and explain embodied robots as dynamical systems (3.2). Self-organization needs self-control of technical systems (3.3). Cellular neural networks (CNN) are an example of self-organizing technical systems offering new avenues for neurobionics (3.4). In general, technical neural networks support different kinds of learning robots (3.5). Finally, embodied robotics aim at the development of cognitive and conscious robots (3.6).  相似文献   

10.
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.  相似文献   

11.
The relevance of evolutionary theory to ethics goes back to Darwin but until recently discussion employed evolutionary theory to justify ethical, social and political positions. Recently, evolutionary theory has been used to explain the existence of moral systems and moral propensities and, thereby, to provide a naturalistic basis for ethics. I argue that this approach has advanced our understanding of the basis of moral systems and moral propensities but does not as yet adequately incorporate the role of cognition in its account. Cognition has the effect of decoupling to some extent — though, of course, far from fully — human moral systems from their evolutionary origins. In an adequate account, evolutionary theory will play a crucial role but so also will our evolved cognitive abilities.  相似文献   

12.
Sensorimotor control engages cognitive processes such as prediction, learning, and multisensory integration. Understanding the neural mechanisms underlying these cognitive processes with arm reaching is challenging because we currently record only a fraction of the relevant neurons, the arm has nonlinear dynamics, and multiple modalities of sensory feedback contribute to control. A brain–computer interface (BCI) is a well-defined sensorimotor loop with key simplifying advantages that address each of these challenges, while engaging similar cognitive processes. As a result, BCI is becoming recognized as a powerful tool for basic scientific studies of sensorimotor control. Here, we describe the benefits of BCI for basic scientific inquiries and review recent BCI studies that have uncovered new insights into the neural mechanisms underlying sensorimotor control.  相似文献   

13.
Naturalistic theories of representation seek to specify the conditions that must be met for an entity to represent another entity. Although these approaches have been relatively successful in certain areas, such as communication theory or genetics, many doubt that they can be employed to naturalize complex cognitive representations. In this essay I identify some of the difficulties for developing a teleosemantic theory of cognitive representations and provide a strategy for accommodating them: to look into models of signaling in evolutionary game theory. I show how these models can be used to formulate teleosemantics and expand it in new directions.  相似文献   

14.
The social brain?   总被引:1,自引:0,他引:1  
The notion that there is a 'social brain' in humans specialized for social interactions has received considerable support from brain imaging and, to a lesser extent, from lesion studies. Specific roles for the various components of the social brain are beginning to emerge. For example, the amygdala attaches emotional value to faces, enabling us to recognize expressions such as fear and trustworthiness, while the posterior superior temporal sulcus predicts the end point of the complex trajectories created when agents act upon the world. It has proved more difficult to assign a role to medial prefrontal cortex, which is consistently activated when people think about mental states. I suggest that this region may have a special role in the second-order representations needed for communicative acts when we have to represent someone else's representation of our own mental state. These cognitive processes are not specifically social, since they can be applied in other domains. However, these cognitive processes have been driven to ever higher levels of sophistication by the complexities of social interaction.  相似文献   

15.
The study of internal knowledge representations is a cornerstone of the research agenda in the interdisciplinary study of cognition. An influential proposal assumes that the brain uses its internal knowledge of the external world to constrain, in a top-down manner, high-dimensional sensory data into a lower-dimensional representation that enables perceptual decisions and other higher-level cognitive functions [1-9]. This proposal relies on a precise formulation of the observer-specific internal knowledge (i.e., the internal representations, or models) that guides reduction of the high-dimensional retinal input onto a low-dimensional code. Here, we directly revealed the content of subjective internal representations by instructing five observers to detect a face in the presence of only white noise, to force a pure top-down, knowledge-based task. We used reverse correlation methods to visualize each observer's internal representation that supports detection of an illusory face. Using reverse correlation again, this time applied to observers' electroencephalogram activity, we established where and when in the brain specific internal knowledge conceptually interprets the input white noise as a face. We show that internal representations can be reconstructed experimentally from behavioral and brain data, and that their content drives neural activity first over frontal and then over occipitotemporal cortex.  相似文献   

16.
An abstract representation of biological systems from the standpoint of the theory of supercategories is presented. The relevance of such representations forG-relational biologies is suggested. In section A the basic concepts of our representation, that is class, system, supercategory and measure are introduced. Section B is concerned with the mathematical representation starting with some axioms and principles which are natural extensions of the current abstract representations in biology. Likewise, some extensions of the principle of adequate design are introduced in section C. Two theorems which present the connection between categories and supercategories are proved. Two other theorems concerning the dynamical behavior of biological and biophysical systems are derived on the basis of the previous considerations. Section D is devoted to a general study of oscillatory behavior in enzymic systems, some general quantitative relations being derived from our representation. Finally, the relevance of these results for a quantum theoretic approach to biology is discussed.  相似文献   

17.
Quantification of complexity in neurophysiological signals has been studied using different methods, especially those from information or dynamical system theory. These studies have revealed a dependence on different states of consciousness, and in particular that wakefulness is characterized by a greater complexity of brain signals, perhaps due to the necessity for the brain to handle varied sensorimotor information. Thus, these frameworks are very useful in attempts to quantify cognitive states. We set out to analyze different types of signals obtained from scalp electroencephalography (EEG), intracranial EEG and magnetoencephalography recording in subjects during different states of consciousness: resting wakefulness, different sleep stages and epileptic seizures. The signals were analyzed using a statistical (permutation entropy) and a deterministic (permutation Lempel–Ziv complexity) analytical method. The results are presented in complexity versus entropy graphs, showing that the values of entropy and complexity of the signals tend to be greatest when the subjects are in fully alert states, falling in states with loss of awareness or consciousness. These findings were robust for all three types of recordings. We propose that the investigation of the structure of cognition using the frameworks of complexity will reveal mechanistic aspects of brain dynamics associated not only with altered states of consciousness but also with normal and pathological conditions.  相似文献   

18.
For decades, the cognitive and neural sciences have benefitted greatly from a separation of mind and brain into distinct functional domains. The tremendous success of this approach notwithstanding, it is self-evident that such a view is incomplete. Goal-directed behaviour of an organism requires the joint functioning of perception, memory and sensorimotor control. A prime candidate for achieving integration across these functional domains are attentional processes. Consequently, this Theme Issue brings together studies of attentional selection from many fields, both experimental and theoretical, that are united in their quest to find overreaching integrative principles of attention between perception, memory and action. In all domains, attention is understood as combination of competition and priority control (‘bias’), with the task as a decisive driving factor to ensure coherent goal-directed behaviour and cognition. Using vision as the predominant model system for attentional selection, many studies of this Theme Issue focus special emphasis on eye movements as a selection process that is both a fundamental action and serves a key function in perception. The Theme Issue spans a wide range of methods, from measuring human behaviour in the real word to recordings of single neurons in the non-human primate brain. We firmly believe that combining such a breadth in approaches is necessary not only for attentional selection, but also to take the next decisive step in all of the cognitive and neural sciences: to understand cognition and behaviour beyond isolated domains.  相似文献   

19.
We develop a model of the process of thinking in the presence of noise (which is produced by the simultaneous action of a huge number of neurons in the brain as well as by external information and internal cognitive processes). Our model is based on Freud's idea on the splitting of cognitive processes into two (closely connected) domains: consciousness and subconsciousness. We represent the process of thinking as a random dynamical process in a space of ideas endowed with a non-Euclidean geometry (which differs extremely from the ordinary Euclidean geometry of spatial location of neurons in the brain). The so-called p-adic geometry on a space of ideas describes the ability of cognitive systems to form associations. We show that random dynamical thinking systems on a p -adic space of ideas still generate only deterministic ideas. We also study positive and negative effects of noise (in particular, creativeness and stress).  相似文献   

20.
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号