首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6 mg/g at 60 °C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.  相似文献   

2.
Preparation of the activated carbons from sunflower oil cake by sulphuric acid activation with different impregnation ratios was carried out. Laboratory prepared activated carbons were used as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Liquid-phase adsorption experiments were conducted and the maximum adsorption capacity of each activated carbon was determined. The effects of various process parameters i.e., temperature, pH, initial methylene blue concentration, contact time on the adsorption capacity of each activated carbon were investigated. The kinetic models for MB adsorption onto the activated carbons were studied. Langmuir isotherm showed better fit than Freundlich isotherm for all activated carbon samples. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The separation factor (R(L)) revealed the favorable nature of the isotherm of the MB activated carbon system.  相似文献   

3.
The biosorption characteristics of Pb(II) and Cr(III) ions from aqueous solution using the lichen (Parmelina tiliaceae) biomass were investigated. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by P. tiliaceae biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of P. tiliaceae biomass for Pb(II) and Cr(III) ions was found to be 75.8 mg/g and 52.1mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/mol for Cr(III) biosorption, indicating that the biosorption of both metal ions was taken place by chemical ion-exchange. The calculated thermodynamic parameters (delta G degrees , delta H degrees and delta S degrees ) showed that the biosorption of Pb(II) and Cr(III) ions onto P. tiliaceae biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

4.
Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.  相似文献   

5.
The aim of this study was to investigate the ability of Lemna minor for Toluidine Blue (TB) removal. Influence of the initial concentration over the removal process was considered. Experimental data have been analyzed using Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Elovich isotherm models. In addition, several kinetic models, pseudo-first-, pseudo-second-order, intraparticle and film diffusion models were considered. Langmuir and Freundlich isotherm suggested a favorable adsorption of TB by Lemna minor plants. From the D–R the mean free energy was calculated to be 11.18 kJ/mol, which indicates that TB adsorption was characterized by a chemisorption process. Kinetic studies showed that liquid film diffusion plays an important role during the process. Adsorption capacities of up to 26.69 mg/g and a high capacity of adaptation indicated that phytoremediation using Lemna minor could be a valuable alternative for dyes removal from wastewaters.  相似文献   

6.
The retention profile of methylene blue from aqueous solutions onto the solid adsorbent date pits has been investigated in a batch system. The characterization and adsorption efficiency for methylene blue was evaluated using date pits. Fourier Transform Infra-Red, Scanning Electron Microscope, Brunauer–Emmett–Teller analysis were performed to determine the characteristics of the material. The effect of contact time, initial dye concentration, adsorbent dosage, temperature, and solution pH were investigated. The adsorption was found to increase with increasing time, decreasing concentration of dye, decreasing temperature and increasing dosage up to equilibrium values which was 20 min, 25°C, and 0.1 g adsorbent, respectively. The adsorption was favorable at high and low pH (pH 3, pH 7). The adsorption equilibrium data were best fitted by Freundlich isotherm. The adsorption kinetics was found to follow the pseudo second order kinetic model. Thermodynamic parameters such as free energy, enthalpy, and entropy were calculated and found to be ?4.6 kJ/mole, ?7.9 kJ/mole, and ?11.8 kJ/mole, respectively. The thermodynamic parameters of the uptake of methylene blue onto the date pits indicated that, the process is exothermic and proceeds spontaneously at low temperature. A single stage batch adsorber was designed for adsorption of methylene blue by Date Pits based on optimum isotherm.  相似文献   

7.
Activated carbon has been prepared from date fruit pits. The carbon, prepared at different burn‐off rates, showed a high uptake of methylene blue. At 92 % burn‐off (weight loss percent of the carbonized pits upon activation), methylene blue uptake was 590 mg/g. With this high capacity, the carbon was then used to study the adsorption of phenol, 2‐nitrophenol, 2,4‐dinitrophenol, and 2,4,6‐trinitrophenol. The prepared activated carbon showed an adsorption capacity better than that of many activated carbons in current use. The experimental adsorption data for the single components were regressed using both Langmuir and Freundlich isotherm models and the fit was generally satisfactory. The experimental adsorption data of the binary system phenol‐2‐nitrophenol were compared with the predicted results using two predictive models: the generalized Langmuir and the IAS models. The data were better represented by the IAS theory than the generalized Langmuir model even though the fit of the experimental data was not adequate.  相似文献   

8.
Caulerpa racemosa var. cylindracea is one of the well-known invasive species in the Mediterranean Sea. In the present study, dried biomass of C. racemosa var. cylindracea was shown to have adsorption capacity for methylene blue. The adsorption reached equilibrium at 90 min for all studied concentrations (5-100mg/L). The pseudo-second-order model is well in line with our experimental results. There was a sharp increase in the adsorbed dye amount per adsorbent amount from 3.3 to 16.7 g/L, then a slight increase up to 66.7 g/L was observed. Langmuir and Freundlich's models were applied to the data related to adsorption isotherm. According to Langmuir's model data, the observed maximum adsorption capacity (qm) was 5.23 mg/g at 18 degrees C. The enthalpy of adsorption was found to be 33 kJ/mol, which indicated a chemical adsorption between dye molecules and C. racemosa var. cylindracea functional groups.  相似文献   

9.
The adsorption behavior of azinphosmethyl on pyrolyzed Horseshoe Crab (Limulus polyphemus) outer shell, as a residue, from the Atlantic Ocean, collected along the Maine coast, USA, has been studied with regards to its kinetic and equilibrium conditions, taking into account adsorbate concentrations of 2 x 10(-3), 4 x 10(-3), 6 x 10(-3), and 8 x 10(-3), as well as temperatures of 30 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C. The yield of adsorption of azinphosmethyl from aqueous solution ranged from 56.1% to 61% with temperature increasing. Kinetic studies showed that adsorption rate decreased as the initial azinphosmethyl concentration increased. It was found, that the adsorption reaction obeyed first-order kinetics. The overall rate constants were estimated for different temperatures. The activation energy for adsorption was about 1.52 kJmol(-1), which implies that azinphosmethyl mainly adsorbed physically onto Horseshoe Crab outer shell. Langmuir and Freundlich isotherms were applied to the experimental data and isotherm constants were calculated. The thermodynamic parameters DeltaG0, DeltaH0 and DeltaS0 for the adsorption reaction were evaluated based on equilibrium data and in connection with this result the thermodynamic aspects of adsorption reaction were discussed. The adsorption was found to be endothermic in nature. The adsorbent used in this study proved highly efficient for the removal of azinphosmethyl.  相似文献   

10.
This paper provided information on the use of linear sweep anodic stripping voltammetry for evaluating the process of copper biosorption onto Pseudomonas aeruginosa. This technique was suited to determine the concentration of free copper ion on site on the mercaptoethane sulfonate modified gold electrode surface without any pretreatment. It was in favor of the study of kinetic process as the fast changing kinetic data characteristic just after the beginning of biosorption could be accurately depicted. Based on the electrochemical results, the kinetics and equilibrium of biosorption were systematically examined. The pseudo-second-order kinetic model was used to correlate the kinetic experimental data and the kinetic parameters were evaluated. The Langmuir and Freundlich models were applied to describe the biosorption equilibrium. It was found that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. Maximum adsorption capacity of copper ion onto Pseudomonas aeruginosa was 0.9355 μmol mg−1 (about 59.4417 mg g−1).  相似文献   

11.
The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.  相似文献   

12.
A green type composite biosorbent composed of pine, oak, hornbeam, and fir sawdust biomasses modified with cetyltrimethylammonium bromide (CTAB) was first used for biosorption of an unsafe synthetic food dye, Food Green 3 from liquid medium in this study. Batch studies were carried by observing the effects of pH, dye concentration, biosorbent amount, and contact time. The equilibrium data were analyzed using Freundlich, Langmuir, and Dubinin–Radushkevich equations. Freundlich model gave a better conformity than other equations. The maximum dye removal potential of biosorbent was found to be 36.6 mg/g based on Langmuir isotherm. The pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were applied to clarify the process kinetics of biosorption. The mechanism studies suggested the biosorption process obeying Elovich kinetics and involving pore diffusion. The estimated values of biosorption free energy from Dubinin–Radushkevich isotherm (E value <8 kJ/mol) and thermodynamic studies (0 < ΔG° < ?20 kJ/mol) implied a spontaneous, feasible, and physical process. Hence, this investigation suggested that the CTAB modified mix sawdust biomass could be a promising biosorbent for biosorption of such problematic dyes from impacted media.  相似文献   

13.
The interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode (GCE) surface was investigated in terms of the FAD adsorption thermodynamics and kinetics, the subsequent electroreduction mechanism, and the corresponding electron-transfer rate. The kinetics of FAD electroreduction at the GCE was found to be an adsorption-controlled process. A set of electroreduction kinetic parameters was calculated: the true number of electrons involved in the FAD reduction, n=1.76, the apparent transfer coefficient, alpha(app)=0.41, and the apparent heterogeneous electron-transfer rate constant, k(app)=1.4 s(-1). The deviation of the number of exchanged electrons from the theoretical value for the complete reduction of FAD to FADH(2) (n=2) indicates that a small portion of FAD goes to a semiquinone state during the redox process. The FAD adsorption was well described by the Langmuir adsorption isotherm. The large negative apparent Gibbs energy of adsorption (DeltaG(ads)=-39.7 +/-0.4 kJ mol(-1)) indicated a highly spontaneous and strong adsorption of FAD on the GCE. The energetics of the adsorption process was found to be independent of the electrode surface charge in the electrochemical double-layer region. The kinetics of FAD adsorption was modeled using a pseudo-first-order kinetic model.  相似文献   

14.
A batch adsorption system was applied to study the adsorption of Fe(II) and Fe(III) ions from aqueous solution by chitosan and cross-linked chitosan beads. The adsorption capacities and rates of Fe(II) and Fe(III) ions onto chitosan and cross-linked chitosan beads were evaluated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to enhance the chemical resistance and mechanical strength of chitosan beads. Experiments were carried out as function of pH, agitation period, agitation rate and concentration of Fe(II) and Fe(III) ions. Langmuir and Freundlich adsorption models were applied to describe the isotherms and isotherm constants. Equilibrium data agreed very well with the Langmuir model. The kinetic experimental data correlated well with the second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Results also showed that chitosan and cross-linked chitosan beads were favourable adsorbers.  相似文献   

15.
The influence of process variables in batch adsorption has been used to assess the removal of methylene blue dye from aqueous solution using pure and carbonized biomasses of water hyacinth and water spinach. Dried leaves of the water weeds were carbonized at temperature up to 750°C. The optimum removal of dye was achieved at pH 10, 30°C, and 55 min at a dye concentration of 10 mg/L. In an attempt to describe the adsorption process, the equilibrium isotherm for each adsorbent was determined using Langmuir and Freundlich adsorption isotherm models. Maximum adsorption capacities based on the Langmuir model for pure and carbonized water hyacinth were (mg/g) 7.05 and 2.07, respectively, whereas those of pure and carbonized water spinach were 1.25 and 5.32, respectively. It was observed that the equilibrium data were well fit by both the Freundlich and Langmuir isotherms as R 2 > .97. This study demonstrates that the two waterweeds are effective, environmentally friendly, and inexpensive biomaterials for the removal of color from industrial effluents.  相似文献   

16.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

17.
A previous study reported that the uptake and release kinetics of ouabain by human erythrocytes in suspension could well be explained by a physical model which involves the slow Langmuir binding of the drug to the erythrocyte membrane. The purpose of the present investigation was to assess quantitatively the thermodynamics of this drug-membrane receptor interaction in order to evaluate the consistency of these parameters with the proposed kinetics model.Cellular drug uptake and release experiments were conducted at 20, 30 and 40°C, and the Langmuir adsorption and desorption rate constants as well as the Langmuir adsorption isotherms determined from the rate data. With the knowledge of these Langmuir parameters, it was possible to estimate the magnitude of all relevant thermodynamic properties by the use of established physicochemical theories.The activation energies and entropies for the ouabain adsorption and desorption processes were computed as 105 kJ/mol, 231 J/K per mol, 180 kJ/mol and 245 J/K per mol, respectively. The kinetic and isosteric heats of adsorption were found to be ?75.0 and ?72.4 kJ/mol, respectively. These findings suggest that the ouabain-erythrocyte membrane interaction represents a case of activated chemisorption which follows the Langmuir isotherm, thus, further underscoring the appropriateness of the Langmuir binding kinetics model.  相似文献   

18.
19.
The preparation of activated carbon from apricot stone with H2SO4 activation and its ability to remove a basic dye, astrazon yellow 7GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6 g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 °C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.  相似文献   

20.
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L−1) using the fraction 63–100 μm of ATOS (solid/liquid ratio: 1 g L−1). Experimental data were modeled by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherms. The Freundlich isotherm model (R2 = 0.98–0.99) fitted the equilibrium data better than the Langmuir and D–R isotherm models, with low sum of error values (SE = 1.4–9.2%). The mean adsorption free energy derived from the D–R isotherm model (R2 = 0.95–0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, ΔH, ΔS and ΔG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号