首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.  相似文献   

2.
Aims: To determine the relationship between yellow band disease (YBD)-associated pathogenic bacteria found in both Caribbean and Indo-Pacific reefs, and the virulence of these pathogens. YBD is one of the most significant coral diseases of the tropics. Materials and Results: The consortium of four Vibrio species was isolated from YBD tissue on Indo-Pacific corals: Vibrio rotiferianus, Vibrio harveyi, Vibrio alginolyticus and Vibrio proteolyticus. This consortium affects Symbiodinium (zooxanthellae) in hospite causing symbiotic algal cell dysfunction and disorganization of algal thylakoid membrane-bound compartment from corals in both field and laboratory. Infected corals have decreased zooxanthella cell division compared with the healthy corals. Vibrios isolated from diseased Diploastrea heliopora, Fungia spp. and Herpolitha spp. of reef-building corals display pale yellow lesions, which are similar to those found on Caribbean Montastraea spp. with YBD. Conclusions: The Vibrio consortium found in YBD-infected corals in the Caribbean are close genetic relatives to those in the Indo-Pacific. The consortium directly attacks Symbiodinium spp. (zooxanthellae) within gastrodermal tissues, causing degenerated and deformed organelles, and depleted photosynthetic pigments in vitro and in situ. Infected Fungia spp. have decreased cell division compared with the healthy zooxanthellae: 4·9%vs 1·9%, (P ≥ 0·0024), and in D. heliopora from 4·7% to 0·7% (P ≥ 0·002). Significance and Impact of the Study: Pathogen virulence has major impacts on the survival of these important reef-building corals around the tropics.  相似文献   

3.
Benthic algae are associated with coral death in the form of stress and disease. It''s been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a prerequisite to potential transmission of these pathogens.  相似文献   

4.
Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.  相似文献   

5.
The rate and extent of mortality from yellow band disease (YBD) to Montastraea annularis (species complex) on reefs off Mona Island, Puerto Rico, was evaluated over 8 yr. Isolated YBD infections were first observed in 1996. Prevalence of YBD increased dramatically in 1999, with a maximum of 52 % of all M. annularis colonies infected in 1 shallow site. YBD continued to spread among adjacent, previously uninfected corals over the next 4 yr, and disease prevalence progressively increased in deeper sites. Linear rates of disease advance and tissue mortality have been slow (5 to 15 cm yr(-1)), although colonies with single YBD lesions have become infected in multiple locations. Most (85%) colonies identified with YBD in 1999 and 2000 were still affected in 2003, and these corals have lost a mean of 60% of their living tissue. Mortality from YBD is being compounded by black band disease, white plague and other syndromes; bioeroding sponges, macroalgae, cyanobacteria and other competitors have colonized tissue-denuded skeleton, minimizing the likelihood of resheeting. The deteriorating health of M. annularis is of particular concern, as these are the dominant corals on these reefs, the largest (2 to 3 m diameter and height) and presumably oldest colonies were infected with YBD more frequently than small colonies, and no recruitment has been observed. YBD is causing extensive mortality to key reef-building taxa in a remote location where anthropogenic stressors are minimal. Additional research on causes of YBD, mechanisms of infection, and strategies to mitigate YBD is needed; otherwise, M. annularis may suffer a fate similar to that of the Atlantic acroporids.  相似文献   

6.
Interactions among microorganisms found in coral mucus can be either symbiotic or competitive. It has been hypothesized that microbial communities found on the surface of coral play a role in coral holobiont defense, possibly through production of antimicrobial substances. Selected microorganisms isolated from the mucus layer of a number of coral species were grown using agar-plating techniques. Screening for antimicrobial substances was performed using overlay and drop techniques, employing several indicator microorganisms. Between 25% and 70% of cultivable mucus-associated bacteria from scleractinian corals demonstrated bioactivity. Higher percentages of activity were evident in mucus-associated cultivable bacteria from massive and solitary corals, as compared with bacteria from branching or soft corals. Isolates related to the genera Vibrio and Pseudoalteromonas demonstrated high activity against both Gram-positive and Gram-negative bacteria. Gram-positive bacteria ( Bacillus, Planomicrobium ) demonstrated lower levels of activity, primarily against other Gram-positive bacteria. In some cases, inhibitory effects were confined to the cell fraction, suggesting the involvement of a cell-bound molecule, sensitive to temperature and most likely proteinaceous in nature. These results demonstrate the existence of microorganisms with antimicrobial activity on the coral surface, possibly acting as a first line of defense to protect the coral host against pathogens.  相似文献   

7.
In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has > 50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annularis. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (+/- 0.04 SD) to 1.74% (+/- 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.  相似文献   

8.
Thirteen reef areas of Colombian territories in the Southwestern Caribbean were surveyed during the last 10 years. Coral diseases have been recorded in all these areas since 1990 and some of them have increased progressively. Six types were differentiated in the region, of which black band disease (BBD), dark spots disease (DSD), white band disease (WBD) and white plague disease (WPD) are widespread and common. Yellow band disease (YBD) was observed only since April 1998 but has been found now in seven reef areas and eight coral species (most of them recorded here as new hosts). In total, 25 species of hard corals were observed with diseases in the region, of which Colpophyllia natans, Diploria labyrinthiformis, Montastraea annularis, M. faveolata, M. franksi and Acropora spp. appear to be highly susceptible.  相似文献   

9.
Coral diseases have been reported as a major problem affecting Caribbean coral reefs. During August 2000, a coral mortality event of White Plague Disease-II (WPD-II) was observed at Madrizqui Reef in Los Roques National Park, Venezuela. This disease was identified as the major cause of coral mortality, affecting 24% of all colonies surveyed (n = 1 439). Other diseases such as Black Band Disease (BBD), Yellow Blotch Disease (YBD), Dark Spots Disease (DSD) and White Band Disease (WBD) were also recorded, but showed a lower incidence (0.14-0.97%). Two depth intervals, D1 (5.5-6.5 m) and D2 (9-9.5 m) were surveyed with two sets of three band transects 50 x 2 m long, placed parallel to the long axis of the reef. All healthy and injured corals, along each band transect, were counted and identified to species level. Additionally, all diseases and recent mortality that were still identifiable on each colony also were recorded. The incidence of colonies affected by WPD-II ranged from 12.8 to 33% among transects, where thirteen species of scleractinian corals showed several degrees of mortality. The species most affected were Montastraea annularis (39.13%), M. faveolata (26.67%), M. franksi (9.86%), Stephanocoenia intersepta (7.25%), Colpophyllia natans (6.96%), Diploria labyrinthiformis (2.99%), Mycetophyllia aliciae (2.03%), M. cavernosa (1.74%), and D. strigosa (1.45%). WPD-II was more common in the deeper strata (9-9.5 m), where 63% of the surveyed colonies were affected, although the disease was present along the entire reef. Presently, it is imperative to determine how fast the disease is spreading across the reef, how the disease spreads across the affected colonies and what the long-term effects on the reef will be.  相似文献   

10.
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat‐forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5‐fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching‐induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future.  相似文献   

11.

Global- and local-scale anthropogenic stressors have been the main drivers of coral reef decline, causing shifts in coral reef community composition and ecosystem functioning. Excess nutrient enrichment can make corals more vulnerable to ocean warming by suppressing calcification and reducing photosynthetic performance. However, in some environments, corals can exhibit higher growth rates and thermal performance in response to nutrient enrichment. In this study, we measured how chronic nutrient enrichment at low concentrations affected coral physiology, including endosymbiont and coral host response variables, and holobiont metabolic responses of Pocillopora spp. colonies in Mo'orea, French Polynesia. We experimentally enriched corals with dissolved inorganic nitrogen and phosphate for 15 months on an oligotrophic fore reef in Mo'orea. We first characterized symbiont and coral physiological traits due to enrichment and then used thermal performance curves to quantify the relationship between metabolic rates and temperature for experimentally enriched and control coral colonies. We found that endosymbiont densities and total tissue biomass were 54% and 22% higher in nutrient-enriched corals, respectively, relative to controls. Algal endosymbiont nitrogen content cell−1 was 44% lower in enriched corals relative to the control colonies. In addition, thermal performance metrics indicated that the maximal rate of performance for gross photosynthesis was 29% higher and the rate of oxygen evolution at a reference temperature (26.8 °C) for gross photosynthesis was 33% higher in enriched colonies compared to the control colonies. These differences were not attributed to symbiont community composition between corals in different treatments, as C42, a symbiont type in the Cladocopium genus, was the dominant endosymbiont type found in all corals. Together, our results show that in an oligotrophic fore reef environment, nutrient enrichment can cause changes in coral endosymbiont physiology that increase the performance of the coral holobiont.

  相似文献   

12.
Bacteria from several groups of marine organisms were isolated and, using direct antibiograms, identified those that produce antibacterial substances, using a human pathogenic strain of Staphylococcus aureus ATCC6538 as revealing microorganism. Bacteria which produce substances that inhibited S. aureus growth were identified through morphological, physiological and biochemical tests. Out of 290 bacteria, 54 (18.6%) inhibited the growth of S. aureus, but only 27 survived for identification. Bivalves, sponges and corals were the most represented from which 41.2, 33.3 and 29.7%, respectively, produced antibacterial substances of the isolated bacteria in each group. The marine species with highest proportions of these bacteria were the hard coral Madracis decactis (62.5%), the sponges Cliona sp. (57.1%) and the octocoral Plexaura flexuosa (50.0%). Out of the 27 strains that produced antibacterial substances, 51.8% were Aeromonas spp. and 14.8% Vibrio spp. Marine bacteria that produce antibacterial substances are abundant, most belong in the Vibrionacea group and were isolated mainly from corals and bivalve mollusks.  相似文献   

13.
Live corals are the key habitat forming organisms on coral reefs, contributing to both biological and physical structure. Understanding the importance of corals for reef fishes is, however, restricted to a few key families of fishes, whereas it is likely that a vast number of fish species will be adversely affected by the loss of live corals. This study used data from published literature together with independent field based surveys to quantify the range of reef fish species that use live coral habitats. A total of 320 species from 39 families use live coral habitats, accounting for approximately 8 % of all reef fishes. Many of the fishes reported to use live corals are from the families Pomacentridae (68 spp.) and Gobiidae (44 spp.) and most (66 %) are either planktivores or omnivores. 126 species of fish associate with corals as juveniles, although many of these fishes have no apparent affiliation with coral as adults, suggesting an ontogenetic shift in coral reliance. Collectively, reef fishes have been reported to use at least 93 species of coral, mainly from the genus Acropora and Porities and associate predominantly with branching growth forms. Some fish associate with a single coral species, whilst others can be found on more than 20 different species of coral indicating there is considerable variation in habitat specialisation among coral associated fish species. The large number of fishes that rely on coral highlights that habitat degradation and coral loss will have significant consequences for biodiversity and productivity of reef fish assemblages.  相似文献   

14.
A high number of coral colonies, Montipora spp., with progressive tissue loss were reported from the north shore of Kaua‘i by a member of the Eyes of the Reef volunteer reporting network. The disease has a distinct lesion (semi-circular pattern of tissue loss with an adjacent dark band) that was first observed in Hanalei Bay, Kaua‘i in 2004. The disease, initially termed Montipora banded tissue loss, appeared grossly similar to black band disease (BBD), which affects corals worldwide. Following the initial report, a rapid response was initiated as outlined in Hawai‘i’s rapid response contingency plan to determine outbreak status and investigate the disease. Our study identified the three dominant bacterial constituents indicative of BBD (filamentous cyanobacteria, sulfate-reducing bacteria, sulfide-oxidizing bacteria) in coral disease lesions from Kaua‘i, which provided the first evidence of BBD in the Hawaiian archipelago. A rapid survey at the alleged outbreak site found disease to affect 6-7% of the montiporids, which is higher than a prior prevalence of less than 1% measured on Kaua‘i in 2004, indicative of an epizootic. Tagged colonies with BBD had an average rate of tissue loss of 5.7 cm2/day over a two-month period. Treatment of diseased colonies with a double band of marine epoxy, mixed with chlorine powder, effectively reduced colony mortality. Within two months, treated colonies lost an average of 30% less tissue compared to untreated controls.  相似文献   

15.
Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.  相似文献   

16.
Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature–dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.  相似文献   

17.
Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25 degrees C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29 degrees C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28 degrees C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.  相似文献   

18.
Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.  相似文献   

19.
The authors investigated the response to experimentally elevated water temperature in genotypes of Pocillopora damicornis from three coral reefs in the upwelling Gulf of Panama and four coral reefs in the non-upwelling Gulf of Chiriquí, Panamanian Pacific. Sea-surface temperature in the Gulf of Panama declines below 20 °C during seasonal upwelling, while in the thermally stable Gulf of Chiriquí, the temperature ranges from 27 to 29 °C. Genotypes of P. damicornis from the seven locations were determined by allozyme electrophoresis. The most abundant genotype at each location was selected for a thermal tolerance experiment where corals were exposed to water temperature of 30 °C (1 °C above ambient) for 43 days. Four site coral genotypes can be uniquely differentiated by the GPI locus, two by the LGG-2 locus, and two by a combination of the MDH-1, LGG-2, and LTY-3 loci. A visual assessment of the coral condition after exposure to an elevated temperature showed that corals from localities in the non-upwelling environment retained a normal to slightly pale appearance, while corals from the upwelling environment bleached and their polyps were mostly retracted. A two-way ANOVA confirmed that corals were significantly affected by water temperature and locality. The zooxanthellae were also significantly affected by the interaction of elevated temperature and locality of the corals. Mean zooxanthellae density decreased by 25 and 55%, respectively, in experimentally heated corals from the non-upwelling and upwelling environments. Low concentrations of photosynthetic pigments per live area of the corals were the norm in corals under elevated temperature. The mean concentration of chlorophyll a per live area of the corals was reduced by 17 and 49%, respectively, in heated corals from the non-upwelling and upwelling sites. Coral genotypes from the upwelling Gulf of Panama demonstrated higher vulnerability to thermal stress than coral genotypes from the non-upwelling Gulf of Chiriquí. However, the latter showed greater differences in their responses. Thus, even at small geographic scales, corals can display different levels of tolerance to thermal stress. The difference in thermal tolerance between corals from upwelling and non-upwelling environments is concomitant with greater genetic differences in experimental corals from the thermally stable Gulf of Chiriquí compared with corals from the upwelling Gulf of Panama.Communicated by K.S. Sealey  相似文献   

20.
Brown band (BrB) disease manifests on corals as a ciliate-dominated lesion that typically progresses rapidly causing extensive mortality, but it is unclear whether the dominant ciliate Porpostoma guamense is a primary or an opportunistic pathogen, the latter taking advantage of compromised coral tissue or depressed host resistance. In this study, manipulative aquarium-based experiments were used to investigate the role of P. guamense as a pathogen when inoculated onto fragments of the coral Acropora hyacinthus that were either healthy, preyed on by Acanthaster planci (crown-of-thorns starfish; COTS), or experimentally injured. Following ciliate inoculation, BrB lesions developed on all of COTS-predated fragments (n = 9 fragments) and progressed up to 4.6 ± 0.3 cm d?1, resulting in ~70 % of coral tissue loss after 4 d. Similarly, BrB lesions developed rapidly on experimentally injured corals and ~38 % of coral tissue area was lost 60 h after inoculation. In contrast, no BrB lesions were observed on healthy corals following experimental inoculations. A choice experiment demonstrated that ciliates are strongly attracted to physically injured corals, with over 55 % of inoculated ciliates migrating to injured corals and forming distinct lesions, whereas ciliates did not migrate to healthy corals. Our results indicate that ciliates characteristic of BrB disease are opportunistic pathogens that rapidly migrate to and colonise compromised coral tissue, leading to rapid coral mortality, particularly following predation or injury. Predicted increases in tropical storms, cyclones, and COTS outbreaks are likely to increase the incidence of coral injury in the near future, promoting BrB disease and further contributing to declines in coral cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号