首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Photoactive yellow protein (PYP) is a blue light sensor present in the purple photosynthetic bacterium Ectothiorhodospira halophila, which undergoes a cyclic series of absorbance changes upon illumination at its lambda(max) of 446 nm. The anionic p-hydroxycinnamoyl chromophore of PYP is covalently bound as a thiol ester to Cys69, buried in a hydrophobic pocket, and hydrogen-bonded via its phenolate oxygen to Glu46 and Tyr42. The chromophore becomes protonated in the photobleached state (I(2)) after it undergoes trans-cis isomerization, which results in breaking of the H-bond between Glu46 and the chromophore and partial exposure of the phenolic ring to the solvent. In previous mutagenesis studies of a Glu46Gln mutant, we have shown that a key factor in controlling the color and photocycle kinetics of PYP is this H-bonding system. To further investigate this, we have now characterized Glu46Asp and Glu46Ala mutants. The ground-state absorption spectrum of the Glu46Asp mutant shows a pH-dependent equilibrium (pK = 8.6) between two species: a protonated (acidic) form (lambda(max) = 345 nm), and a slightly blue-shifted deprotonated (basic) form (lambda(max) = 444 nm). Both of these species are photoactive. A similar transition was also observed for the Glu46Ala mutant (pK = 7.9), resulting in two photoactive red-shifted forms: a basic species (lambda(max) = 465 nm) and a protonated species (lambda(max) = 365 nm). We attribute these spectral transitions to protonation/deprotonation of the phenolate oxygen of the chromophore. This is demonstrated by FT Raman spectra. Dark recovery kinetics (return to the unphotolyzed state) were found to vary appreciably between these various photoactive species. These spectral and kinetic properties indicate that the hydrogen bond between Glu46 and the chromophore hydroxyl group is a dominant factor in controlling the pK values of the chromophore and the glutamate carboxyl.  相似文献   

2.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

3.
The kinetics of the photocycle of PYP and its mutants E46Q and E46A were investigated as a function of pH. E46 is the putative donor of the chromophore which becomes protonated in the I(2) intermediate. For E46Q we find that I(2) is in a pH-dependent equilibrium with its precursor I(1)' with a pK(a) of 8.15 and n = 1. From this result and from experiments with pH indicator dyes, we conclude that in the I(1)' to I(2) transition one proton is taken up from the external medium. The pK(a) of 8.15 is that of the surface-exposed chromophore in the equilibrium between I(1)' and I(2) and is close to that of the phenolate group of p-hydroxycinnamic acid. The pH-dependent I(1)'/I(2) equilibrium with associated H(+) uptake is reminiscent of the M(I)/M(II) equilibrium in the formation of the signaling state of rhodopsin. Well above this pK(a) no I(2) is formed and I(1)' returns in a pH-independent manner to the initial state P. The decay rate for the return to P via I(2) is between pH 4 and pH 8, exactly proportional to the hydroxide concentration (first order), and the deprotonation of the chromophore in this transition occurs by hydroxide uptake. Well above the pK(a) of 8.15 the apparent rate constant for the return to P is constant due to the branching from I(1)'. Complementary measurements with the pH indicator dye cresol red at pH 8.3 show that the remaining PYP molecules that still cycle via I(2) take up one proton in the formation of I(2). Together, these observations provide compelling evidence that during the photocycle the chromophore in E46Q is protonated and deprotonated from the external medium. For the yellow form of the mutant E46A the apparent rate constant for the return to P is also linear in [OH(-)] below about pH 8.3 and constant above about pH 9.5, with a pK(a) value of 8.8 for I(1)', suggesting a similar mechanism of chromophore protonation/deprotonation as in E46Q. For wild type qualitatively similar observations were made: the amplitude of I(2) decreased at alkaline pH, I(1)' and I(2) were in equilibrium, and I(1)' decayed together with the return to P. Chromophore hydrolysis prevented, however, an accurate determination of the pK(a) of I(1)'. We estimate that its value is above 11. The ground state P is in the dark in a pH-dependent equilibrium with a low-pH bleached form P(bl) with protonated chromophore. The pK(a) values for these equilibria are 4.8 and 7.9 for E46Q and E46A, respectively. When the pH is close to these pK(a)'s, the kinetics of the photocycle contains additional components in the millisecond time range. Using pH-jump stopped-flow experiments, we show that these contributions are due to the relaxation of the P/P(bl) equilibrium which is perturbed by the rapid decrease in the P concentration caused by the flash excitation of P. The condition for the occurrence of this effect is that the relaxation time of the P/P(bl) equilibrium is faster than the photocycle time.  相似文献   

4.
Light-dependent pH changes were measured in unbuffered solutions of wild type photoactive yellow protein (PYP) and its H108F and E46Q variants, using two independent techniques: transient absorption changes of added pH indicator dyes and direct readings with a combination pH electrode. Depending on the absolute pH of the sample, a reversible protonation as well as a deprotonation can be observed upon formation of the transient, blue-shifted photocycle intermediate (pB) of this photoreceptor protein. The latter is observed at very alkaline pH, the former at acidic pH values. At neutral pH, however, the formation of the pB state is not paralleled by significant protonation/deprotonation of PYP, as expected for concomitant protonation of the chromophore and deprotonation of Glu-46 during pB formation. We interpret these results as further evidence that a proton is transferred from Glu-46 to the coumaric acid chromophore of PYP, during pB formation. One cannot exclude the possibility, however, that this transfer proceeds through the bulk aqueous phase. Simultaneously, an amino acid side chain(s) (e.g. His-108) changes from a buried to an exposed position. These results, therefore, further support the idea that PYP significantly unfolds in the pB state and resolve the controversy regarding proton transfer during the PYP photocycle.  相似文献   

5.
The purple phototrophic bacterium, Thermochromatium tepidum, contains a gene for a chimeric photoactive yellow protein/bacteriophytochrome/diguanylate cyclase (Ppd). We produced the Tc. tepidum PYP domain (Tt PYP) in Escherichia coli, and found that it has a wavelength maximum at 358 nm due to a Leu46 substitution of the color-tuning Glu46 found in the prototypic Halorhodospira halophila PYP (Hh PYP). However, the 358 nm dark-adapted state is in a pH-dependent equilibrium with a yellow species absorbing at 465 nm (pK(a) = 10.2). Following illumination at 358 nm, photocycle kinetics are characterized at pH 7.0 by a small bleach and red shift to what appears to be a long-lived cis intermediate (comparable to the I(2) intermediate in Hh PYP). The recovery to the dark-adapted state has a lifetime of approximately 4 min, which is approximately 1500 times slower than that for Hh PYP. However, when the Tt PYP is illuminated at pH values above 7.5, the light-induced difference spectrum indicates a pH-dependent equilibrium between the I(2) intermediate and a red-shifted 440 nm intermediate. This equilibrium could be responsible for the sigmoidal pH dependence of the recovery of the dark-adapted state (pK(a) = 8.8). In addition, the light-induced difference spectrum shows that, at pH values above 9.3, there is an apparent bleach near 490 nm superimposed on the 358 and 440 nm changes, which we ascribe to the equilibrium between the protonated and ionized dark-adapted forms. The L46E mutant of Tt PYP has a wavelength maximum at 446 nm, resembling wild-type Hh PYP. The kinetics of recovery of L46E following illumination with white light are slow (lifetime of 15 min at pH 7), but are comparable to those of wild-type Tt PYP. We conclude that Tt PYP is unique among the PYPs studied to date in that it has a photocycle initiated from a dark-adapted state with a protonated chromophore at physiological pH. However, it is kinetically most similar to Rhodocista centenaria PYP (Ppr) despite the very different absorption spectra due to the lack of E46.  相似文献   

6.
Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated 13Cγ resonances in sensitive and well-resolved two-dimensional 13C-1H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pKa values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41–11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state.  相似文献   

7.
The photocycle intermediates of photoactive yellow protein (PYP) were characterized by low-temperature Fourier transform infrared spectroscopy. The difference FTIR spectra of PYP(B), PYP(H), PYP(L), and PYP(M) minus PYP were measured under the irradiation condition determined by UV-visible spectroscopy. Although the chromophore bands of PYP(B) were weak, intense sharp bands complementary to the 1163-cm(-1) band of PYP, which show the chromophore is deprotonated, were observed at 1168-1169 cm(-1) for PYP(H) and PYP(L), indicating that the proton at Glu46 is not transferred before formation of PYP(M). Free trans-p-coumaric acid had a 1294-cm(-1) band, which was shifted to 1288 cm(-1) in the cis form. All the difference FTIR spectra obtained had the pair of bands corresponding to them, indicating that all the intermediates have the chromophore in the cis configuration. The characteristic vibrational modes at 1020-960 cm(-1) distinguished the intermediates. Because these modes were shifted by deuterium-labeling at the ethylene bond of the chromophore while labeling at the phenol part had no effect, they were attributed to the ethylene bond region. Hence, structural differences among the intermediates are present in this region. Bands at about 1730 cm(-1), which show that Glu46 is protonated, were observed for all intermediates except for PYP(M). Because the frequency of this mode was constant in PYP(B), PYP(H), and PYP(L), the environment of Glu46 is conserved in these intermediates. The photocycle of PYP would therefore proceed by changing the structure of the twisted ethylene bond of the chromophore.  相似文献   

8.
The blue light receptor photoactive yellow protein (PYP) displays a photocycle that involves several intermediate states. Here we report resonance Raman spectroscopic investigations of the short-lived red-shifted intermediate denoted PYP(L). We have found that the Raman bands of the carbonyl C=O stretching mode nu(11) as well as the C=C stretching mode nu(13) for the chromophore can be resolved into two peaks, and the ratio of the two components varies as a function of pH with pK(a) approximately 6. The isotope effects on the resonance Raman spectra have confirmed a deprotonated cis-chromophore for the two components. The results indicate the presence of two conformations in the active site of PYP(L). The normal coordinate calculations based on the density functional theory provide a structural model for the two conformations, where the low pH form is possibly an active structure for the protonation reaction generating a following intermediate in the photocycle.  相似文献   

9.
To understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal, we are characterizing photoactive yellow protein (PYP), a water-soluble, 14 kDa blue-light receptor which undergoes a photocycle upon illumination. The active site residues glutamic acid 46, arginine 52, tyrosine 42, and threonine 50 form a hydrogen bond network with the anionic p-hydroxycinnamoyl cysteine 69 chromophore in the PYP ground state, suggesting an essential role for these residues for the maintenance of the chromophore's negative charge, the photocycle kinetics, the signaling mechanism, and the protein stability. Here, we describe the role of T50 and Y42 by use of site-specific mutants. T50 and Y42 are involved in fine-tuning the chromophore's absorption maximum. The high-resolution X-ray structures show that the hydrogen-bonding interactions between the protein and the chromophore are weakened in the mutants, leading to increased electron density on the chromophore's aromatic ring and consequently to a red shift of its absorption maximum from 446 nm to 457 and 458 nm in the mutants T50V and Y42F, respectively. Both mutants have slightly perturbed photocycle kinetics and, similar to the R52A mutant, are bleached more rapidly and recover more slowly than the wild type. The effect of pH on the kinetics is similar to wild-type PYP, suggesting that T50 and Y42 are not directly involved in any protonation or deprotonation events that control the speed of the light cycle. The unfolding energies, 26.8 and 25.1 kJ/mol for T50V and Y42F, respectively, are decreased when compared to that of the wild type (29.7 kJ/mol). In the mutant Y42F, the reduced protein stability gives rise to a second PYP population with an altered chromophore conformation as shown by UV/visible and FT Raman spectroscopy. The second chromophore conformation gives rise to a shoulder at 391 nm in the UV/visible absorption spectrum and indicates that the hydrogen bond between Y42 and the chromophore is crucial for the stabilization of the native chromophore and protein conformation. The two conformations in the Y42F mutant can be interconverted by chaotropic and kosmotropic agents, respectively, according to the Hofmeister series. The FT Raman spectra and the acid titration curves suggest that the 391 nm form of the chromophore is not fully protonated. The fluorescence quantum yield of the mutant Y42F is 1.8% and is increased by an order of magnitude when compared to the wild type.  相似文献   

10.
To investigate the roles of amino acid residues around the chromophore in photoactive yellow protein (PYP), new mutants, Y42A, E46A, and T50A were prepared. Their spectroscopic properties were compared with those of wild-type, Y42F, E46Q, T50V, R52Q, and E46Q/T50V, which were previously prepared and specified. The absorption maxima of Y42A, E46A, and T50A were observed at 438, 469, and 454 nm, respectively. The results of pH titration for the chromophore demonstrated that the chromophore of PYP mutant, like the wild-type, was protonated and bleached under acidic conditions. The red-shifts of the absorption maxima in mutants tended toward a pK(a) increase. Mutation at Glu46 induced remarkable shifts in the absorption maxima and pK(a). The extinction coefficients were increased in proportion to the absorption maxima, whereas the oscillator strengths were constant. PYP mutants that conserved Tyr42 were in the pH-dependent equilibrium between two states (yellow and colorless forms). However, Y42A and Y42F were in the pH-independent equilibrium between additional intermediate state(s) at around neutral pH, in which yellow form was dominant in Y42F whereas the other was dominant in Y42A. These findings suggest that Tyr42 acts as the hinge of the protein, and the bulk as well as the hydroxyl group of Tyr42 controls the protein conformation. In all mutants, absorbance at 450 nm was decreased upon flash irradiation and afterwards recovered on a millisecond time scale. However, absorbance at 340--370 nm was increased vice versa, indicating that the long-lived near-UV intermediates are formed from mutants, as in the case of wild-type. The lifetime changes with mutation suggest the regulation of proton movement through a hydrogen-bonding network.  相似文献   

11.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

12.
Photoactive yellow protein (PYP) is a bacterial blue light receptor containing a 4-hydroxycinnamyl chromophore, and its absorption maximum is 446 nm. In a dark state, the hydroxyl group of the chromophore is deprotonated and forms hydrogen bonds with Tyr42 and Glu46. Either removal of a hydrogen bond with Tyr42 or addition of chaotropes such as thiocyanate produces a blue-shifted species called an intermediate wavelength form, in which absorption maximum ranges from 355 to 400 nm. To examine the structural origin of the intermediate wavelength form, we have performed resonance Raman investigations of wild-type PYP and some mutants (Tyr42 --> Ala, Tyr42 --> Phe, Glu46 --> Gln, and Thr50 --> Val) in the presence or absence of potassium thiocyanate. These studies show that the chromophore of the intermediate wavelength form is protonated, implying an increase in a pK(a) of the chromophore. Hence, the removal of the hydrogen bond between Tyr42 and chromophore or partial protein denaturation in the presence of thiocyanate results in a spectral blue-shift. Quantum chemical calculations based on density functional theory further support the idea that the pK(a) of the chromophore is increased by removing a hydrogen bond or by increasing the dielectric constant in the vicinity of the chromophore.  相似文献   

13.
The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor proteins studied to date the covalent linkage of the chromophore to the apoprotein is dispensable for light-induced catalytic activation. We analyzed the functional importance of the covalent linkage using an isosteric chromophore-protein variant in which the cysteine is replaced by a glycine residue and the chromophore by thiomethyl-p-coumaric acid (TMpCA). The model compound TMpCA is shown to weakly complex with the C69G protein. This non-covalent binding results in considerable tuning of both the pKa and the color of the chromophore. The photoactivity of this system, however, was strongly impaired, making PYP the first known photosensor protein in which the covalent linkage of the chromophore is of paramount importance for the functional activity of the protein in vitro. We also studied the influence of chromophore analogs on the color and photocycle of PYP, not only in WT, but especially in the E46Q mutant, to test if effects from both chromophore and protein modifications are additive. When the E46Q protein binds the sinapinic acid chromophore, the color of the protein is effectively changed from yellow to orange. The altered charge distribution in this protein also results in a changed pKa value for chromophore protonation, and a strongly impaired photocycle. Both findings extend our knowledge of the photochemistry of PYP for signal generation.  相似文献   

14.
Acid/base titrations of wild-type PYP and mutants, either in buffer or in the presence of chaotropes such as thiocyanate, establish the presence of four spectral forms including the following: a neutral form (446-476 nm), an acidic form (350-355 nm), an alkaline form (430-440 nm), and an intermediate wavelength form (355-400 nm). The acidic species is formed by protonation of the oxyanion of the para-hydroxy-cinnamyl cysteine chromophore as a secondary result of acid denaturation (with pK(a) values of 2.8-5.4) and often results in precipitation of the protein, and in the case of wild-type PYP, eventual hydrolysis of the chromophore thioester bond at pH values below 2. Thus, the large and complex structural changes associated with the acidic species make it a poor model for the long-lived photocycle intermediate, I(2), which undergoes more moderate structural changes. Mutations at E46, which is hydrogen-bonded to the chromophore, have only two spectral forms accessible to them, the neutral and the acidic forms. Thus, an intact E46 carboxyl group is essential for observation of either intermediate or alkaline wavelength forms. The alkaline form is likely to be due to ionization of E46 in the folded protein. We postulate that the intermediate wavelength form is due to a conformational change that allows solvent access to E46 and formation of a hydrogen-bond from a water molecule to the carboxylic acid group, thus weakening its interaction with the chromophore. Increasing solvent access to the intermediate spectral form with denaturant concentration results in a continuously blue-shifted wavelength maximum.  相似文献   

15.
To understand how proteins translate the energy of sunlight into defined conformational changes, we have measured the photocycle reactions of photoactive yellow protein (PYP) using time-resolved step scan Fourier transform infrared (FTIR) spectroscopy. Global fit analysis yielded the same apparent time constants for the reactions of the chromophore, the protonation changes of protein side chains and the protein backbone motions, indicating that the light cycle reactions are synchronized. Changes in absorbance indicate that there are at least four intermediates (I1, I1', I2, I2'). In the intermediate I1, the dark-state hydrogen bond from Glu 46 to the aromatic ring of the p-hydroxycinnamoyl chromophore is preserved, implying that the chromophore undergoes trans to cis isomerization by flipping, not the aromatic ring, but the thioester linkage with the protein. This excludes an I1 structural model proposed on the basis of time resolved Laue crystallography, but does agree with the cryotrapped structure of an I1 precursor.  相似文献   

16.
Mutating arginine 52 to glutamine (R52Q) in photoactive yellow protein (PYP) increases the pK(a) of the chromophore by 1 pH unit. The structure of the R52Q PYP mutant was determined by X-ray crystallography and was compared to the structure of wild-type PYP to assess the role of R52 in pK(a) regulation. The essential differences between R52Q and the wild type were confined to the loop region containing the 52nd residue. While the hydrogen bonds involving the chromophore were unchanged by the mutation, removing the guanidino group generated a cavity near the chromophore; this cavity is occupied by two water molecules. In the wild type, R52 forms hydrogen bonds with T50 and Y98; these hydrogen bonds are lost in R52Q. Q52 is linked to Y98 by hydrogen bonding through the two water molecules. R52 acts as a lid on the chromophore binding pocket and controls the accessibility of the exterior solvent and the pK(a) of the chromophore. R52 is found to flip out during the formation of PYP(M). The result of this movement is quite similar to the altered structure of R52Q. Thus, we propose that conformational changes at R52 are partly responsible for pK(a) regulation during the photocycle.  相似文献   

17.
Time-resolved ultraviolet-visible spectroscopy was used to characterize the photocycle transitions in single crystals of wild-type and the E-46Q mutant of photoactive yellow protein (PYP) with microsecond time resolution. The results were compared with the results of similar measurements on aqueous solutions of these two variants of PYP, with and without the components present in the mother liquor of crystals. The experimental data were analyzed with global and target analysis. Distinct differences in the reaction path of a PYP molecule are observed between these conditions when it progresses through its photocycle. In the crystalline state i), much faster relaxation of the late blue-shifted photocycle intermediate back to the ground state is observed; ii), this intermediate in crystalline PYP absorbs at 380 nm, rather than at 350-360 nm in solution; and iii), for various intermediates of this photocycle the forward reaction through the photocycle directly competes with a branching reaction that leads directly to the ground state. Significantly, with these altered characteristics, the spectroscopic data on PYP are fully consistent with the structural data obtained for this photoreceptor protein with time-resolved x-ray diffraction analysis, particularly for wild-type PYP.  相似文献   

18.
PYP (photoactive yellow protein) is a photoreceptor protein, which is activated upon photo-isomerization of the p-coumaric acid chromophore and is inactivated as the chromophore is thermally back-isomerized within a second (in PYP(M)-to-PYP(dark) conversion). Here we have examined the mechanism of the rapid thermal isomerization by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction [Devanathan, S. et al. (1998) Biochemistry 37, 11563-11568]. The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by one to three orders of magnitude. By evaluating temperature-dependence of the kinetics, it was found that the retardation resulted unequivocally from elevations of activation enthalpy (DeltaH( double dagger )) but not the other parameters such as activation entropy or heat capacity changes. Another effect exerted by the mutations was an up-shift of the apparent pK(a) of the chromophore [the pK(a) of a titratable group (X) that controls the pK(a) of the chromophore] in the PYP(M)-decay process. The pK(a) up-shift and the DeltaH( double dagger ) elevation show an approximately linear correlation. We, therefore, postulate that the role of Met100 is to reduce the energy barrier of the PYP(M)-decay process by an indirect interaction through X and that the process is thereby facilitated.  相似文献   

19.
Electrostatic calculations of pK(a-values) are reported along a 400 ps molecular dynamics trajectory of bacteriorhodopsin. The sensitivity of calculated pK(a) values to a number of structural factors and factors related to the modelling of the electrostatics are also studied. The results are very sensitive to the choice of internal dielectric constant of the protein (in the interval 2-4). Moreover it is important to include internal water molecules and to average over a long enough portion ( approximately 100 ps) of an equilibrium molecular dynamics trajectory. The internal waters are necessary to get an ion-counter ion complex with the Schiff base and Arg 82 protonated and the aspartic groups (85 and 212) deprotonated. The fluctuations along the MD-trajectory do not change the protonation state of internal residues at neutral pH. However, at other pH values the averaging along a trajectory maybe crucial to get correct protonation states. A relationship is found between the arginine group 82, the aspartic group 85 and the glutamate group 204. Glu 204 is protonated in the ground state but the pK(a) value decreases towards deprotonation when the chromophore isomerizes into the cis state.  相似文献   

20.
As a bacterial blue light sensor the photoactive yellow protein (PYP) undergoes conformational changes upon signal transduction. The absorption of a photon triggers a series of events that are initially localized around the protein chromophore, extends to encompass the whole protein within microseconds, and leads to the formation of the transient pB signaling state. We study the formation of this signaling state pB by molecular simulation and predict its solution structure. Conventional straightforward molecular dynamics is not able to address this formation process due to the long (microsecond) timescales involved, which are (partially) caused by the presence of free energy barriers between the metastable states. To overcome these barriers, we employed the parallel tempering (or replica exchange) method, thus enabling us to predict qualitatively the formation of the PYP signaling state pB. In contrast to the receptor state pG of PYP, the characteristics of this predicted pB structure include a wide open chromophore-binding pocket, with the chromophore and Glu(46) fully solvent-exposed. In addition, loss of alpha-helical structure occurs, caused by the opening motion of the chromophore-binding pocket and the disruptive interaction of the negatively charged Glu(46) with the backbone atoms in the hydrophobic core of the N-terminal cap. Recent NMR experiments agree very well with these predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号